2.Высота делит этот треугольник на два, один из которых равнобедренный прямоугольный. (Угол 45 градусов по условию, второй после построения высоты)
Катеты в нем равны.
Обозначим каждый х,
-один из катетов часть основания, второй катет - высота.
Квадрат гипотенузы равен сумме квадратов двух катетов:
2х²=49*2
х²=49
х=7 см
Высота равна 7, основание треугольника 10.
S=1/2h*a
S=7*10:2=35 cм
3.В трапеции АВСД АВ=СД=10 см, АС=17 см, АД-ВС=12 см.
Проведём СН⊥АД.
В равнобедренной трапеции ДН=(АД-ВС)2=12/2=6 см.
Тр-ник CДН - египетский т.к. отношение гипотенузы и катета равны 5:3 (СД/ДН=10/6=5/3), значит СН=4·2=8 см.
В прямоугольном тр-ке АСН АН²=АС²-СН²=17²-8²=225,
АН=15 см,
АД=АН+ДН=15+6=21 см.
АД-ВС=12 ⇒ ВС=АД-12=21-12=9 см.
S=CН·(АД+ВС)/2=8(21+9)/2=120 см² - это ответ.
1.
Обозначим радиус меньшей окружности буквой r, а большей - R.
По условиям задачи r/R=2/7.
Ширина полосы будет равна R-r и по условиям равна 24 (см), значит: R-r=24 (см), то есть R=r+24 (см).
С учетом полученного результата имеем:
r/r+24=2/7,
7r=2*(r+24),
7r=2r+48,
5r=48,
r=9,6 (см).
Так как R=r+24, то R=9,6+24=33,6(см).
Таким образом диаметр одной окружности будет равен D=2R=33,6*2=67,2(cм), а диаметр второй окружности будет равен
d=2r=9,6*2=19,2 (см).
2.
Расстояние между центрами окружностей - отрезок ОА делится точкой ка в отношении 2:3. Значит, отрезок ОА разделен на 2+3=5 равных частей. Причем ОК содержит 2 части, а КА - 3 части.
10 см : 5 = 2 см - длина каждой из равны частей.
Тогда ОК=2*2 = 4 см. Диаметр меньшей окружности равен 2*4=8 см.
АК = 3*2 = 6 см. Диаметр большей окружности равен 2*6 = 12 см.
Наверное вот так ...