Если прямая (DC), параллельна какой-нибудь прямой (AB), расположенной в плоскости (α), то она параллельна самой плоскости. Если плоскость проходит через прямую (DC), параллельную другой плоскости (α), и пересекает эту плоскость, то линия пересечения (EF) параллельна первой прямой (DC). Расстояние от прямой DC до плоскости α - это перпендикуляр из любой точки этой прямой на плоскость α. Итак, в прямоугольном треугольнике АЕD катет АЕ равен по Пифагору АЕ=√(AD²-DE²)=√(36²-18²)=18√3. Угол между двумя пересекающимися плоскостями равен углу между прямыми, по которым они пересекаются с любой плоскостью, перпендикулярной их линии пересечения. То есть угол между плоскостью α и плоскостью квадрата - это угол EAD, cинус которого равен отношению противолежащего катета к гипотенузе: Sinβ=ED/AD=18/36=1/2. Значит угол между плоскостями равен 30°. Площадь проекции квадрата на плоскость α - это площадь прямоугольника AEFB, равная S=AB*AE=36*18√3=648√3см²
Высота равнобедренного треугольника является и его медианой. Тогда по Пифагору боковая сторона нашего треугольника равна √(15²+20²)=25см. Расстояние от вершины С треугольника до точки, в которой вписанная окружность касается стороны, равно d=(a+b-c)/2 = p-c, где р - полупериметр, с - сторона, лежащая против вершины С. Полупериметр нашего треугольника равен 45см. Тогда расстояние от вершины В до точек касания ВК=ВР=45-40=5см. Треугольник КВР подобен треугольнику АВС с коэффициентом подобия 5/25=1/5. Тогда расстояние КР=40*(1/5)=8см. Это ответ. Опустим из точки Р перпендикуляр РQ на сторону АС. Треугольник QРС подобен треугольнику МВС с коэффициентом подобия 20/25=4/5. Тогда РQ=15*4/5=12см, QC=20*4/5=16см, а МQ=20-16=4см. По Пифагору из треугольника QMP расстояние МР=МК=√(РQ²+МQ²)=√(12²+4²)=4√10см. Это ответ.
Расстояние от прямой DC до плоскости α - это перпендикуляр из любой точки этой прямой на плоскость α.
Итак, в прямоугольном треугольнике АЕD катет АЕ равен по Пифагору
АЕ=√(AD²-DE²)=√(36²-18²)=18√3.
Угол между двумя пересекающимися плоскостями равен углу между прямыми, по которым они пересекаются с любой плоскостью, перпендикулярной их линии пересечения. То есть угол между плоскостью α и плоскостью квадрата - это угол EAD, cинус которого равен отношению противолежащего катета к гипотенузе: Sinβ=ED/AD=18/36=1/2. Значит угол между плоскостями равен 30°.
Площадь проекции квадрата на плоскость α - это площадь прямоугольника AEFB, равная S=AB*AE=36*18√3=648√3см²