Центр окружности, описанной около прямоугольника, - это точка пересечения его диагоналей, а радиус - половина диагонали.
Тогда диагональ:
d = 2R = 2 · 7,5 = 15 см.
Пусть х - одна часть, тогда стороны 3х и 4х.
Две смежные стороны и диагональ образуют прямоугольный треугольник. По теореме Пифагора:
d² = (3x)² + (4x)²
9x² + 16x² = 225
25x² = 225
x² = 9
x = 3 (x = - 3 не подходит по смыслу задачи)
3 · 3 = 9 см - одна сторона
3 · 4 = 12 см - другая сторона прямоугольника.
P = (9 + 12) · 2 = 21 · 2 = 42 см
OM делит AB пополам пересекая её. Так как части AB равны, то OM перпендикулярна AB. При этом продолжение OM пересекает и касательную, которая в свою очередь будет параллельна AB, т.к. она касается лишь одной точки и эта точка, точка пересечения OM.
Доказать это можно так:
OM перпендикулярна AB и касательной, значит образованные углы равны 90градусов, из этого следуют три признака док-ва параллельности:
-по на крест лежащим углам при AB, касательной и секущей OM
-по соответственным углам при AB, касательной и секущей OM
- по равносторонним углам при AB, касательной и секущей OM
Скорее всего вас в школе учили по-другому делать, но надеюсь хоть на мысль-то натолкнул:)