Сумма углов любого треугольника равна 180° 1) 180° - (48° + 48°) = 84° В данном треугольнике величины углов равны 48°, 48° и 84°, каждый из них острый, т.к. меньше 90°, значит, этот треугольник - остроугольный.
2) 180° - (25° + 65°) = 90° В данном треугольнике величины углов равны 25°, 65° и 90°, один из них прямой, равный 90°, значит, этот треугольник - прямоугольный.
3)180° - 85° = 95° В данном треугольнике величины двух углов равны 85°, а величина третьего - 95° больше 90°, значит, это угол тупой и следовательно этот треугольник - тупоугольный. ответ: А - 2; Б - 1; В - 3
Это же элементарно! Обозначим углы ромба буквами A;B;C;D Есть такое правило, что диагонали ромба точкой пересечения делятся попалам а все стороны равны, следовательно рассмотрим треугольник ABO: AB=30см BO=15 см т. к половина диагонали. И получается прямоугольный треугольник ABO По теореме пифагора ищим сторону AO 30^2=15^2+x Считаем и получаем x Х у нас будет 1/2 от второй диагонали а значит вторая диагональ равна в 2 раза больше. Ну а площадь ромба равна 1/2 произведения диагоналей а тоесть 30*2x*1/2 удачи)
ответ: 15,6 см.
Объяснение:
Решение.
Отношение АС/ВС=tgB.
AC =BC*tg60* = 9*√3=15,6 см.