Пусть стороны АВ и ВС треугольника соответственно равны 1 и √15 а его медиана ВМ равна 2.На продолжении медианы BM за точку M отложим отрезок MD, равный BM. Из равенства треугольников ABM и CDM (по двум сторонам и углу между ними) следует равенство площадей треугольников ABC и BCD. В треугольнике BCD известно, что ВС=√15; ВD=2ВМ = 2*2=4 ; DС=АВ=1 по формуле герона р=(√15+4+1)/2=(√15+5)/2 s=√(p(p-BC)(p-BD)(p-DC))=√((√15+5)/2)((√15+5)/2-√15)((√15+5)/2-4)((√15+5)/2-1)= √((√15+5)/2)((-√15+5)/2)((√15-3)/2)((√15+3)/2)=√(((√15+5)(5-√15)(√15-3)(√15+3))/16) =√(((25-15)(15-9))/16)=√60/√16=2√15/4 2*3.87/4=1.94
А). Рассмотрим треугольники АМР и СКР. Они равны по второму признаку равенства: сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника: - АМ=СК по условию; - углы А и С равны как углы при основании равнобедренного треугольника АВС; - углы АМР и СКР равны по условию. У равных треугольников АМР и СКР равны соответственные стороны МР и КР.
б). Рассмотрим треугольник МРК. Он равнобедренный (МР=КР как было доказано выше). В равнобедренном треугольнике углы при основании равны. Т.е. <KMP=<MKP.
ВС=√15; ВD=2ВМ = 2*2=4 ; DС=АВ=1
по формуле герона
р=(√15+4+1)/2=(√15+5)/2
s=√(p(p-BC)(p-BD)(p-DC))=√((√15+5)/2)((√15+5)/2-√15)((√15+5)/2-4)((√15+5)/2-1)=
√((√15+5)/2)((-√15+5)/2)((√15-3)/2)((√15+3)/2)=√(((√15+5)(5-√15)(√15-3)(√15+3))/16)
=√(((25-15)(15-9))/16)=√60/√16=2√15/4
2*3.87/4=1.94