Радиус перпендикулярен касательной в точке касания, а отрезки касательных АМ и ВМ равны по свойству касательных из одной точки. Следовательно, прямоугольные треугольники ОАМ и ОВМ равны по катету и общей гипотенузе. Тогда <AOM=<BOM=60°, а <АМО=<BMO=30° и МО=16см, так как ОА=ОВ=8см - катет против угла 30°.По Пифагору АМ=ВМ=√(16²-8²)=8√3см.
Треугольник АВМ равносторонний, так как угол при его вершине равен 60°.
Следовательно, его периметр равен 3*8√3=24√3см.
ответ: периметр равен 24√3 см.
Подробнее - на -
Объяснение:
Можно рассуждать по-другому. Есть теорема, по которой произведение площадей треугольников AOB и COD равно произведению площадей треугольников AOD и BOC, откуда неизвестная площадь тр-ка AOD = 6·8/4=12. Доказательство этой теоремы очень простое, основывается на вычислении площади треугольника по формуле "половина произведения сторон и на синус угла между ними", а также на формуле приведения sin (180°-α)=sin α.