Даны шесть отрезков длиной 6см; шесть отрезков длиной 11см; шесть отрезков длиной 13см. С использованием нескольких этих отрезков сконструирована треугольная прямая призма. Рёбра, которой построены из одного отрезка выбранной длины. Вычисли максимальный возможный объём этой призмы.
Запиши, чему равны cтороны основания призмы (в возрастающем/неубывающем порядке):
треугольник АВО - прямоугольный, т.к. в равнобедренном треугольнике биссектриса, проведенная к основанию, является также высотой. Значит сумма двух острых углов равна 90 градусов. Т.к. угол А=60 градусов, значит угол АВО=30 градусов.
В прямоугольном треугольнике катет, лежащий против угла 30 градусов, равен половине гипотенузы, т.е. против угла АВО=30 градусов лежит катет АО=8 см. АВ= 2АО= 16 см