М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
averianova1986
averianova1986
07.10.2022 10:55 •  Геометрия

Кокружности проведена касательная ав (в-точка касания). прямая ам проходит через центр окружности и пересекает ее в точках м и n. найти квадрат расстояния от точки в до прямой an, если ам=1, ав равнен корень квадратный
из 3 в правильном шестиугольнике abcdef из вершины с на диагональ ad опущен перпендикуляр ск. найти отношение длин отрезков ак и kd в трапеции abcd с основаниями ad и вс длина средней линии mn =10. площади четырёхугольников
mbcn и amnd относятся как 3: 5 соответственно. во сколько раз длина ad больше длины вс?

👇
Ответ:
DemonOfFood
DemonOfFood
07.10.2022

1. AN = AB^2/AM = 3; MN = 2; => OB = 1;

=> угол BAO = 30 градусов; BH = AB*sin(30) = корень(3)/2;

2. О - центр правильного шестиугольника.

ОС = ОD = CD = OA; => OK = KD; => AK/KD = 3;

3. вот тут есть кое-что интересное. Построение такое - проводим ВР II CD, Р лежит на MN. Проводим PK II BA, K лежит на AD. Ясно, что PN = BC; => MP = (AD - BC)/2 = AK; 

Трапеция KPND равна трапеции MBCN, то есть её площадь составляет 3/5 площади AMNP. Площадь параллелограмма AMPK, соответственно, составляет 2/5 от площади AMNP. Поскольку у этих фигур общая высота, отношение их площадей равно отношению средних линий.

Обдумайте это внимательно - речь идет о средних линиях параллелограмма (а параллелограмм - частный случай трапеции :)) AMPK, равной АК = МР = (AD - BC)/2; и средней линии трапеции KPND, то есть - трапеции MBCN, равной ((AD + BC)/2 + BC)/2 = (AD/4 + 3*BC/4); 

(Я вынужден сделать замечание. Условие MN = 10 я намеренно не использую, хотя отлично вижу, что тут можно было бы подставить это значение.)

Итак, получилось (AD/2 + 3*BC/2)/(AD - BC) = 3/2; обозначим AD/BC = x;

(x/2 + 3/2)/(x - 1) = 3/2; x = 3;

Условие MN = 10 позволяет найти основания, равные 5 и 15.

4,4(98 оценок)
Открыть все ответы
Ответ:
tigranpesoz3twi
tigranpesoz3twi
07.10.2022
Из правильного треугольника АВС: из теоремы Пифагора: высота ВК равна 3 корня из 2. Угол ОАК  - это угол между плоскостью АОС и основанием. Поскольку угол ОАК = 30 градусов, то катет ОК равен гипотенузы ОА как катет, который лежит против угла 30 градусов. ОК = ОА/2. Пускай ОК = х, тогда ОА = 2х. Из прямоугольного треугольника ОАК: за теоремой Пифагора: OA^2 = OK^2 + AK^2, 4x^2 = 9 - x^2, 3x^2 = 9, x^2 = 3, x = корень из 3. OK = корень из 3. Объем призмы равен площади основания умножить на высоту: S = So*H = S(ABC)*OK = BK*AC/2*OK = 9 корней из 6.

Основание пирамиды правильный треугольник со стороной 6. одно из боковых рёбер перпендикулярно к осн
4,4(31 оценок)
Ответ:
kirpol83p01doz
kirpol83p01doz
07.10.2022
Признак равенства по гипотенузе и острому углу.Если гипотенуза и острый угол одного прямоугольного треугольника соответственно равны гипотенузе и острому углу другого прямоугольного треугольника, то такие треугольники равны.
Признак равенства прямоугольных треугольников по двум катетам.Если два катета одного прямоугольного треугольника соответственно равны двум катетам другого прямоугольного треугольника, то такие треугольники равны.
Признак равенства прямоугольных треугольников по катету и гипотенузе.Если катет и гипотенуза одного прямоугольного треугольника соответственно равны катету и гипотенузе другого прямоугольного треугольника, то такие треугольники равны.
Признак равенства прямоугольных треугольников по катету и острому углу.Если катет и острый угол одного прямоугольного треугольника соответственно равны катету и острому углу другого прямоугольного треугольника, то такие треугольники равны.
4,8(28 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ