Меньший катет равен половине гипотенузы, так как он лежит против угла в 30 градусов. пусть х - меньший катет, тогда гипотенуза равна 2х. х + 2х = 26,4 3х = 26,4 х = 8,8 2х = 17,6 - гипотенуза. как то так)). ответ разместил: Гость. сейчас я попробую, что-нибудь решить. я же всё-таки не знаток, мне недавно 16 исполнилось. s1(площадь правильного треугольника)=корень из 3 делим на 4 и умножаем на сторону в квадрате=sqrt3/4*a*a. s2(площадь тетраэдра)=s1*4(так как в тетраэдре 4 равносторонних треугольника)=sqrt(3)*a*a=30*sqrt3. то есть a*a=30.
по моему так
Проведем высоту DH ,тогда разностью оснований трапеции будет отрезок HC(так как AD=BH).
Обозначим AB как 4x , тогда DC 5x - (по условию).Из прямоугольного треугольника
DHC по теореме Пифагора отрезок HC равен √25x^2-16x^2= 3x,
то есть BC-AD=18=3x,откуда x=6, DC=5x=30(см.),AB=DH=4x=24(см.).
Из прямоугольного треугольника BDH по теореме Пифагора находим BH:
BH=√26^2-24^2=10(см.), основание BC равно HC+BH=28(см.).
Площадь трапеции S(ABCD)=(AD+BC)/2*DH= (28+10)/2*24=456 (см^2).
ответ: 456
5) Пусть дана трапеция ABCD, углы BAD и ABC - прямые.
Проведем высоту DH,тогда отрезок HC=BC-AD=8 (см.).
Из прямоугольного треугольника DHC найдем по теореме Пифагора высоту DH:
DH=√DC^-HC^2=6 (см.).
Площадь трапеции S(ABCD)=(AD+BC)/2*DH=(5+13)/2*6=54(см^2.).
ответ: 54