MN - средняя линия треугольника АВС, значит MN║AC и MN = AC/2 = 42/2 = 21 см
NK- средняя линия треугольника BCD, значит NK║BD и NK = BD/2 = 38/2 = 19 см
КР - средняя линия треугольника ADC, значит КР║АС и КР = АС/2 = 42/2 = 21 см
РМ - средняя линия треугольника ABD, значит РМ║BD и РМ = BD/2 = 38/2 = 19 см
MNKP - параллелограмм, так его противоположные стороны равны.
Pmnkp = (MN + NK) · 2 = (21 + 19) · 2 = 40 · 2 = 80 cм
Вообще, если соединить середины сторон любого выпуклого четырехугольника, получим параллелограмм, периметр которого равен сумме диагоналей четырехугольника, а площадь равна половине его площади.
1. На прямой "а" откладываем отрезок АВ, равный отрезку PQ.
2. В точке А строим угол, равный данному, со стороной, лежащей на прямой "а".
3. В точке В строим угол, равный данному, со стороной, лежащей на прямой "а".
4. В точке пересечения сторон построенных углов получаем точку С.
Треугольник АВС построен.
Построение угла, равного данному:
Проводим окружность с центром в точке М - вершине данного угла.
Получим точки К и Н на сторонах данного нам угла.
Проводим окружность этого же радиуса (МН) с центром в точке А.
Получим точку К' на стороне АВ.
Раствором циркуля, равным расстоянию КН из точки К' проведем дугу радиуса КН и получим точку H'.
Через точки А и Н' проведем прямую - угол Н'АК' равен данному нам углу.
Проводим окружность радиуса МН с центром в точке В.
Получим точку К" на стороне АВ.
Раствором циркуля, равным расстоянию КН из точки К" проведем дугу радиуса КН и получим точку H".
Через точки B и Н" проведем прямую - угол Н"BК" равен данному нам углу.
Объяснение:
мне лень было делать на листочке:")
Если дана площадь боковой поверхности 81 см^2, то площадь одной грани равна 81:4=20,25 см^2, a ребро куба равно корень из 20,25=4,5 см. Диагональ любой боковой грани (корень из 40,5) см