AB = CD так как трапеция равнобедренная, ∠ВАD = ∠CDA как углы при основании равнобедренной трапеции, AD - общая сторона для треугольников BAD и CDA, ⇒ ΔBAD = ΔCDA по двум сторонам и углу между ними.
Значит ∠CAD = ∠BDA. Тогда ΔOAD равнобедренный, прямоугольный, и его высота (ОН) является и медианой, проведенной к гипотенузе, значит, равна ее половине: ОН = AD/2
ΔВОС подобен ΔDOA по двум углам, значит и ОК = ВС/2
КН = AD/2 + BC/2 = (AD + BC)/2 ⇒ высота равна средней линии.
В равнобедренном треугольнике ABC к основанию AC проведена биссектриса BK. Периметр треугольника ABK равен 12 см, а периметр треугольника ABC равен 20 см.
Пусть стороны АВС равны а,в и с. Биссектриса угла при вершине равнобедренного треугольника является также и медианой и высотой h. Составим систему уравнений на основе данных задания. Р(АВК) = с + h +(b/2) = 12. P(ABC) = 2c + 2(b/2) = 20. Разделим на 2: c + (b/2) = 10. Из первого уравнения имеем h = 12 - (c + (b/2)) = 12 - 10 = 2 см.
123.75, 3, -6.15
Объяснение:
При делении минус останется