Берем лист из тетради в клетку.
1)
Проводим горизонтально линию в 6 клеток.
От середины ( 3 клетки) вверх проводим отрезок 4 клетки, можно больше. Соединяем три конца. Получили остроугольный треугольник.
2).
Проводим отрезок 8 клетки. Из середины ( 4 клетки) проводим вверх 4 клетки ровно. Соединяем концы отрезков. Этот треугольник прямоугольный.
3)
Проводим горизонтально линию в 8 клеток.Из ее середины (4 клетки) чертим вверх отрезок 3 клетки. Соединяем. Это тупоугольный треугольник.
Все эти треугольники получатся равнобедренными.
Да, это параллелограмм
Объяснение:
Потаму что
Параллелограмм — четырехугольник, у которого противоположные стороны попарно параллельны.
Теоремы (свойства параллелограмма):
В параллелограмме противоположные стороны равны и противоположные углы равны
Диагонали параллелограмма точкой пересечения делятся пополам
Углы, прилежащие к любой стороне, в сумме равны
Диагонали параллелограмма делят его на два равных треугольника.
Сумма квадратов диагоналей параллелограмма равна сумме квадратов его сторон
Признаки параллелограмма:
Если противоположные стороны четырехугольника попарно параллельны, то этот четырехугольник — параллелограмм.
Если в четырехугольнике противоположные стороны попарно равны, то этот четырехугольник — параллелограмм.
Если в четырехугольнике две противоположные стороны равны и параллельны, то этот четырехугольник — параллелограмм.
Если в четырехугольнике диагонали, пересекаясь, точкой пересечения делятся пополам, то этот четырехугольник — параллелограмм.
Середины сторон произвольного (в том числе невыпуклого или пространственного) четырехугольника являются вершинами параллелограмма Вариньона.
Стороны этого параллелограмма параллельны соответствующим диагоналям четырехугольника . Периметр параллелограмма Вариньона равен сумме длин диагоналей исходного четырехугольника, а площадь параллелограмма Вариньона равна половине площади исходного четырехугольника.