Координаты середины отрезка равны полусумме соответствующих координат начала и конца отрезка. Следовательно,
1). Xd=(Xa+Xb)/2 => Xa=2*Xd - Xb => Xa= -2-8= -10.
Yd=(Ya+Yb)/2 => Ya=2*Yd - Yb => Ya= 14-5= 9. Точка А(-10;9)
2). Xb=2*Xd - Xa => Xb=8-3=5. Yb=2*Yd - Ya => Yb= -4-0= -4. Точка B(5;-4).
Параллелограмм - четырехугольник, у которого две противоположные стороны равны и параллельны. В данном нам четырехугольнике сторона АВ=√((Xb-Xa)²+(Yb-Ya)²)=√((-7-2)²+(0-(-5))²)=√(81+25)=√106.
CD=√((Xd-Xc)²+(Yd-Yc)²)=√((3-(-6))²+(-4-1)²)=√(81+25)=√106.
Итак, противоположные стороны АВ и CD равны. Условие параллельности векторов: координаты векторов должны быть пропрпциональны, то есть их отношение должно быть равно. В нашем случае вектора АВ и CD имеют координаты: АВ{-9;5}, a CD{9;-5}. Xab/Xcd=Yab/Ycd= -1, то есть АВ параллельна CD.
Таким образом, четырехугольник АBCD - параллелограмм, что и требовалось доказать.
1.
Нарисовать окружность. Разделить ее радиусом на 6 частей. Две точки соединить с центром окружности. Соединить хордой концы раюиусов на окружности. Хорду обычным путем разделить на две равные части. Соединить с центром окружности.
2.
Можно построить прямой угол, проведя обычным перпендикуляр к прямой. Отложить на одной из сторон какой-то отрезок. Затем из свободного конца этого отрезка провести окружность радиусом больше того отрезка в два раза.
Точку пересечения окружности со второй стороной прямого угла соединить с концом первого отрезка. Получим треугольник с катетом длиной вдвое меньшей длины гипотенузы. Угол, лежащий против такого катета, будет равен 30 градусам.
В условии ошибка, при ∠B = 90° AK не может быть катетом
ответ: 30 см