Во втором случае точки
В, С и Д не лежат на одной
прямой.
Объяснение:
1.
ВС=18см
ВД=10см
СД=8см
ВС=ВД+СД=10+8=18(см)
18=18 верно.
Вывод: точка Д лежит между
точками В и С.
2.
ВС=20см
ВД=12см
СД=10см
а) ВС=ВД+СД=12+10=22(см)
20=22 неверно.
Точка Д не лежит между точка
ми В и С.
б) ВД=ВС+СД=20+10=30(см)
12=30 неверно.
Точка С не лежит между точка
ми В и Д.
в) СД=ВС+ВД=20+12=32(см)
10=32 неверно.
Точка В не лежит между точка
ми С и Д.
Вывод: точки В, С и Д не лежат
на одной прямой.
3.
ВС=19см
ВД=6см
СД=25см
СД=ВС+ВД=19+6=25(см)
25=25 верно.
Вывод: точка В лежит между
точками С и Д.
4.
ВС=17см
ВД=24см
СД=7см
ВД=ВС+СД=17+7=24
24=24 верно.
Вывод: точка С лежит между
точками В и Д.
Примем длину ребра куба равной 70 (для кратности между 14 и 5).
Так как точки М и N, принадлежат плоскости АВС, которая параллельна заданной плоскости А1В1С1, то угол между плоскостями MNK и A1B1C1 равен углу между плоскостями MNK и ABC.
Помести куб в систему координат точкой А в начало,ребром АД по оси Ох, ребром АВ по оси Оу.
В соответствии с заданием определим координаты точек.
А(0; 0; 0), В(0; 70; 0), С(70; 70; 0). Уравнение АВС: z = 0.
M(35; 0; 0), N(0; 5; 0), K(0; 0; 14).
Пусть (х1, х2, х3), (у1, у2, у3) и (z1, z2, z3) – координаты первой, второй и третьей точки соответственно. Уравнение плоскости определяется из выражения: (x-x1)*(у2-y1)*(z3-z1) – (x-x1)*(z2-z1)*(y3-y1) – (y-y1)*(x2-x1)*(z3-z1) + (y-y1)*(z2-z1)*(x3-x1) + (z-z1)*(x2-x1)*(y3-y1) – (z-z1)*(y2-y1)*(x3-x1) = 0.
Подставив координаты точек в данное выражение и сократив на 35, получаем уравнение плоскости MNК: 2x + 14y + 5z - 70 = 0.
Угол между плоскостями определяем через его косинус:
cos α = |A₁·A₂ + B₁·B₂ + C₁·C₂|
√(A₁² + B₁² + C₁²)*√(A₂² + B₂² + C₂²) = 1/3.
α = arc cos(1/3) = 1,23096 радиан или 70,529 градуса.