Пусть M1, M2, M3 – образы точки M при последовательных отражениях. Три из четырёх проделанных преобразований (симметрии относительно прямой AB, прямой AC и точки A) не меняют расстояния до точки A. Поскольку точка M осталась на месте, то и симметрия относительно BC не изменила расстояния до точки A. Значит одна из точек Mi лежит на прямой BC. Последовательные отражения относительно AC и AB есть поворот на 2 ∠ BAC, а отражение относительно точки A – поворот на 180 . Значит, композиция всех этих преобразований является поворотом точки M на 2 ∠ BAC + 180 . Так как M осталось неподвижна, то 2 α + 180 делится на 2 π . Значит, ∠ BAC = 90 .
Если ВА⊥АD, то ∠А=90(по опр.перпендикуляра), и ∠В=90, так как ВА⊥ВС, так как ВС∫∫АD(по св-ву парал. прямых) ⇒ АВСD - прямоугольная трапеция( по опр.). Проведем высоту СМ. И рассмотрим получившийся четырехугольник ВАМС, это прямоугольник, так как ∠А=∠В=90, и ∠М=∠С=90(по опр. высоты) ⇒ВА=СМ=6, и ВС=АМ=6. Рассмотрим ΔСМD: СМ мы провели так, что она разделила ∠ВСD=135, на ∠МСВ=90 и ∠МСD=45. Если ∠МСD=45, а ∠СМD=90(по опр. высоты), то ∠СDM=45(по теореме о сумме ∠ в Δ) ⇒ ΔСМD - равнобедренный (по признаку) ⇒ СМ=MD=6(по опр. равноб. Δ) Найдем основание трапеции: АМ+МD 6+6=12