М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
TaiGaaara
TaiGaaara
03.12.2022 02:30 •  Геометрия

решить,это сочтолько решите норм без всяких алзсознапг тц лижбы получить бал!​">

👇
Открыть все ответы
Ответ:
Alina0989
Alina0989
03.12.2022
Задание:

Высота равностороннего треугольника равна 25√3. Найдите его периметр.

Решение:

1) Так как треугольник равносторонний, то ∠A = ∠B = ∠C = 180° : 3 = 60°.
2) Рассмотрим треугольник ABH (∠H = 90)
∠B = 180° - 90° - 60° = 30°
3) AH = половине AB = AB/2 - Катет, лежащий против угла в 30°.
AB2 = (25√3)2 + (AB/2)2
AB2 = 1875 + AB2/4
AB2 - AB2/4= 1875
(3AB2)/4 = 1875
Крест-накрест:
3AB2 = 4 * 1875
3AB2 = 7500
AB2 = 7500 / 3
AB2 = 2500
AB = √2500
AB = 50

4) Периметр равен сумме всех сторон, так как треугольник имеет 3 стороны и в данном случа они все равны, то:
P = 50 + 50 + 50 = 150
ответ: 150
4,7(43 оценок)
Ответ:
SBusic
SBusic
03.12.2022

Дано:

ΔABC, ∠B = 90°.

Вписанная окружность с центром O и радиусом OD = OE = OF,

D∈BC, E∈AC, F∈AB.

OE = 12 (см), EC = 8 (см).

Найти:

S_{\triangle ABC} = ?

Заметим, что AE=AF=12  и  CE=CD=8 (так как отрезки касательных, проведенных к окружности из одной точки, равны).

Пусть OD=OE=OF=r.

Тогда \square BDOF - квадрат, так как \angle B = \angle D = \angle F = 90 \textdegree (и, значит, \angle O = 360 \textdegree - 3 \cdot 90 \textdegree = 90 \textdegree), а также OD=FB, OF=DB и OF=OD. - Все стороны и углы данного четырехугольника равны.

Значит, BD=BF=r.

Тогда катеты треугольника AB=12+r и BC=8+r, а гипотенуза равна AC=12+8=20.

По тереме Пифагора:

(AB)^2 + (BC)^2 = (AC)^2

(12+r)^2+(8+r)^2=20^2\\144+24r+r^2+64+16r+r^2 = 400\\208+40r + 2r^2=400\\2r^2+40r = 192\\r^2+20r-96=0\\\left[\begin{array}{ccc}r_1=4\\r_2=-24\end{array}\right

Второй корень нам не подходит (он отрицательный ... ).

Так что r=4.

AB=4+12=16\\BC=4+8=12

Можем найти площадь:

S_{ \triangle ABC} = \dfrac{(AB) \cdot (AC)}{2} = \dfrac{16 \cdot 12}{2} = 96

Задача решена!

96  см².


№740. Точка дотику кола, вписаного в прямокутний трикутник, ділить його гіпотенузу на відрізки завдо
4,6(47 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ