с Геометрией Найти углы прямоугольного треугольника, если угол между биссектрисой и высотой, проведенными из вершины прямого угла, равен (5+k) градусов.
Во первых, уточним, что прямая р лежит в ОДНОЙ плоскости с треугольником АВС. Во вторых,существует аксиома: "В одной плоскости через любую точку, не лежащую на данной прямой, можно провести прямую, параллельную данной, и притом только одну". Следствие из этой аксиомы: Если прямая пересекает одну из двух параллельных прямых, то она пересекает и вторую параллельную прямую. Это следствие доказывается методом от противного. Предполагается, что прямая (АС или ВС), пересекающая одну из параллельных прямых (АВ) в точке (А или В), НЕ пересекает вторую. Тогда имеем еще одну прямую k, параллельную второй прямой р, проходящую через точку пересечения (А или В), что противоречит аксиоме о параллельных прямых. Итак, если p параллельна AB, а BC и АС пересекают AB, значит прямые BC и АС (или их продолжения) пересекают и прямую p, т.к. p || AB.
1)Дано : АВСД -параллелограмм уг. В- ? на 36 гр. меньше уг.А Найти: углы А,В,С,Д Решение: Пусть уг. А - это х, а уг. В - это х-36 , тогда Составим уравнение : Уг. А + уг. В=180 гр. (т.к внутренние односторонние в сумме дают 180 гр.) х+х-36=180 2х-36=180 2х=180+36 2х=216 х=216/2 х=108 ( это уг.А) уг. В= 108-36=72 гр. уг. А = уг.С =108 гр. (по свойству противолежащих углов параллелограмма) уг. В=уг. Д = 72 гр. (по свойству противолежащих углов параллелограмма) 2) Дано: АВСД-параллелограмм Вд-диагональ уг. АВД/СВД=1/2 Найти : ВД Решение : уг.В= 1х+2х=90 3х=90 х=90/3 х=30(это угол СВД) из этого следует что ВД=2СД ВД=24см
Во вторых,существует аксиома: "В одной плоскости через любую точку, не лежащую на данной прямой, можно провести прямую, параллельную данной, и притом только одну".
Следствие из этой аксиомы:
Если прямая пересекает одну из двух параллельных прямых, то она пересекает и вторую параллельную прямую. Это следствие доказывается методом от противного.
Предполагается, что прямая (АС или ВС), пересекающая одну из параллельных прямых (АВ) в точке (А или В), НЕ пересекает вторую. Тогда имеем еще одну прямую k, параллельную второй прямой р, проходящую через точку пересечения (А или В), что противоречит аксиоме о параллельных прямых.
Итак, если p параллельна AB, а BC и АС пересекают AB, значит прямые BC и АС (или их продолжения) пересекают и прямую p, т.к. p || AB.