В данном случае необходимо использовать обратную теорему Пифагора. Которая гласит, что, если в треугольнике со сторонами a, b и c выполняется равенство c2 = a 2 + b 2 , то этот треугольник прямоугольный, причем прямой угол противолежит стороне c.
Так как сумма квадратов сторон треугольника МРК - MP и KP - равна квадрату большей стороны - MK:
9^2+12^2=15^2,значит треугольник-прямоугольный,то есть его площадь равна половине произведения катетов MPи KP:
S=9*12/2=54.
Если в треугольнике провести высоту PH, например, то она будет являться высотой и для треугольника МРК, и для треугольника КРТ. Таким образом, получаем, что:
Sкрт=1/2 * РН*КТ
Sмрк=1/2 * РН*МК
Данные площади относятся, как КТ/МК, то есть, как 10/15= 2/3 -> площадь треугольника КРТ равна 2*Sмрк /3 = 2* 54/3=36
Получается, что площадь второго треугольника - треугольника МРТ - равна 1/3 площади основного треугольника, то есть 18.
ответ: 18 и 36
а - сторона ромба
периметр
Р = 4а = 52
а = 52/4 = 13 см
Диагонали ромбы d1 и d2 перпендикулярны =>
d1 / d2 = 5 / 12 или d1 = 5d2 / 12
Cтороны прямоугольных треугольников, образуемых диагоналями,будут ^
d1/2, d2/2 -катеты
а - -гипотенуза (она же сторона ромба)
По теореме пифагора
(d1/2)^2 + (d2/2)^2 = a^2
d1^2 + d2^2 = 4a^2
(5d2 /12)^2 + d2^2 = 13^2
25d2^2 + 144d2^2 = 13^2 * 12^2
169d2^2 = (13^2*12^2
13^2 d2^2 = 13^2 * 12^2
d2^2 = 12^2
d2 = 12 см - вторая диагональ
d1 = 5d2 / 12 = 5 * 12 / 12 = 5 - первая диагональ
ответ: диагонали d1=5 cм, d2 = 12 см