ABCD-равнобокая трапеция. АО и DO бисектрисы углов А и D соответственно и точка О лежит на основании ВС. Мы имеем два треугольника ВАО и DCO. Так как трапеция равнобокая, а АО и DO бисектрисы, то углы ВАО=DAO=ADO=CDO. и стороны АВ=CD по условию. Углы ВОА=DAO как накрестлежащие при параллельных AD и ВС и секущей АО. Получили, что у треуг АВО два равные угла ВАО=ВОА, значит он равнобедр. АВ=ВО=4см. Аналогично доказывается равнобедренность треуг. DCO, тогда ВС=4*2=8см. Средняя линия МК=(18+8)/2=13см.
1) Одна боковая сторона равна диаметру окружности, т.е. 8 см (это сторона, перпендикулярная основаниям).
2) Из вершины тупого угла трапеции опустим высоту и рассмотрим образовавшийся прямоугольный тр-к. В нем один из острых углов равен 60 градусов. Второй острый угол его равен 90-60=30 градусов, а катет, лежащий напротив угла 30 гр., равен половине гипотенузы. Прмем длину этого катета за х, тогда длина гипотенузы равна 2х. Второй катет равен найденной в 1-м пункте стороне, т.е. 8 см. По теореме Пифагора: (2х)^2=x^2+8^2; => 4x^2=x^2+64; => x^2=64/3; => x=8/(sqrt(3)).
3) Длина боковой стороны равна 2х=16/(sqrt(3))
ответ:Треугольник равносторонний, все стороны одинаковы. Пусть сторона будет Х. Тогда, высота ,проведенная к основанию треугольника, будет и медианой. А значит, сторону Х делим на 2. Получается х/2. По теореме Пифагора, имеем , Х^2 = (Х/2)^2 + (12√3)^2. Далее, получаем, Х^2 =Х^2/ 4 + 144*3. Затем, Х^2 - Х^2/4 = 432.
Объяснение: