пирамида КАВС, К -вершина , в основании равносторонний треугольник АВС, О-центр основания =пересечение медиан=высот=биссектрис, проводим высоту ВН на АС, уголКВО=45, КО=высота пирамиды=4*корень3, треугольник КВО прямоугольный, уголВКО=90-уголКВО=90-45=45, треугольник КВО равнобедренный, КО=ВО=4*корень3, ВН-медиана, которая в точке пересечения делится в отношении 2/1 начиная от вершины, ВО=2 части, ОН=1 часть=ВО/2=4*корень3/2=2*корень3, ВН=ВО+ОН=4*корень3+2*корень3=6*корень3, АВ=ВС=АС=2*ВН*корень3/3=2*6*корень3*корень3/3=12, площадьАВС=АС в квадрате*корень3/4=144*корень3/4=36*корень3, объем=1/3*площадьАВС*КО=1/3*36*корень3*4*корень3=144
Объяснение:
4.
Если основание а= 3,83 см, то
Боковая сторона b=7,91 см
ответ : a=3,83 cм b=7,91 см
Если а=7,91 см, то b=3,83 cм, но такого тр-ка не существует т, к сумма двух любых сторон должна быть меньше третьей :
3,83+3,83<7,91
5.
Тр-кАВС <С=90 <А=60 СМ высота ВС=8,7 см
Найти : СМ
Решение
<В=180-<С-<А=180-90-60=30
Катет лежащий против угла 30 равен половине гипотенузе
СМ=1/2×ВС=1/2×8,7=4,35 см
6.
Тр-кАВС <С=<СВN=81
<CBM=<ABM+27
Найти <А <В
Пусть <АВМ=х
<СВМ=х+27
Сумма смежных углов равен 180
<СВМ+<СВN=180
X+27+81=180
X=180-81-27=72
<ABM=72
<CBM=72+27=99
<ABC=<CBM-<ABM=99-72=27
<A=180-<ABC-<C=180-27-81=72
ответ : <А=72 <АВС=27 <С=81