АСВ бурышын СА кабыргасы шенберды жанайды. СВ кабыргасы шенбердын центры аркылы отеды ал онын кабыргаларымен шектелген АВ догасы 125 градуска тен осы бурыштарды табындар
Расстояние от точки S до каждой из вершин правильного треугольника АВС равно 5 см,а до плоскости 3 см. Найдите высоту треугольника ----------- Соединим вершины треугольника с точкой Ѕ АЅ=ВЅ=СЅ Если расстояние от точки вне треугольника до его вершин одинаково., то одинаковы проекции наклонных отрезков, соединяющих эту точку с вершинами: значит, вокруг треугольника можно описать окружность, и основание перпендикуляра к плоскости треугольника лежит в центре этой описанной окружности. По условию расстояние до плоскости треугольника 3 см АО=R Треугольник АОЅ- египетский, и АО=4 см( проверьте по т.Пифагора). Радиус описанной вокруг правильного треугольника окружности равен 2/3 его высоты. ⇒ Высота треугольника АН=4:(2/3)=6 см
Т.к. хорда параллельна касательной, то хорда и радиус, пересекающиеся в точке Н, перпендикулярны. Проведём из точки О в А и В радиусы. Т.к. радиусы, понятно дело, равны, то треугольник АОВ равнобедренный. Т.к хорда перпендикулярна радиусу, треугольник равнобедренный, то ВН = НА. Хорда 12, радиус 10, то по теореме Пифагора ОВ^2 = ОН^2 + НВ^2; 100 = ОН^2 + 36; ОН^2 = 100 - 36; ОН = √64; ОН=8. Т.к расстояние от центра окружности до касательной равно радиусу, расстояние от центра до хорды 8, то расстояние от хорды до касательной равно 10+8= 18
-----------
Соединим вершины треугольника с точкой Ѕ
АЅ=ВЅ=СЅ
Если расстояние от точки вне треугольника до его вершин одинаково., то одинаковы проекции наклонных отрезков, соединяющих эту точку с вершинами: значит, вокруг треугольника можно описать окружность, и основание перпендикуляра к плоскости треугольника лежит в центре этой описанной окружности.
По условию расстояние до плоскости треугольника 3 см
АО=R
Треугольник АОЅ- египетский, и АО=4 см( проверьте по т.Пифагора).
Радиус описанной вокруг правильного треугольника окружности равен 2/3 его высоты. ⇒
Высота треугольника АН=4:(2/3)=6 см