Обозначим точку пересечения биссектрисы с АD буквой Н.
В ᐃ АВD биссектриса ВН ⊥ АD,⇒ ВН - высота,⇒
ᐃАВD равнобедренный. Поэтому ВН медиана и делит АD пополам.
АН=НD=84.
АД медиана, значит, ВD=DС. Так как АВ=ВД, то АВ=ВD=DС, и ВС=2АВ.
Биссектриса треугольника делит противоположную сторону в отношении длин прилежащих сторон.
В ᐃАВС биссектриса делит АС в отношении АВ:ВС=1:2 и АС=3 АE
Проведем ВР параллельно АС до пересечения с продолжением медианы АD в точке P.
ᐃ ВDР =ᐃ АDС т.к. ВD=DС, углы при D равны как вертикальные, ∠СВP=∠ВСА как накрестлежащие ⇒ ВР=АС=3 АE
Треугольники АНE и BНP прямоугольные и подобны по равенству углов
( ∠ ВPА=∠PАС как углы при параллельных АС и ВP и секущей ВС).
АE:ВP=НE:ВН=1:3
ВН=3НE
ВЕ=4НЕ
НE=ВE:4=42
ВН=3*42=126
Из ∆ АНE
АE=√(АН²+НE²)
АE=√(84²+42²)
Возвести большое число в квадрат и извлечь корень из него можно разложением числа на множители.
АE=√(6²14²+3²*14²)=√14²(6²+3²)=14*3√5=42√5
АС=3*42√5=126√5
Из ∆ АВН
АВ=√(ВН²+АН²)
АВ=√(9²*14²+6²*14²)=√14²(9²+6²)=14*√(9*13)=42√13
ВС=2АВ=84√13
Найдены все три стороны.
Заклинания для таких задач :)))
Заклинание первое. Если у треугольников общая высота к основаниям, то отношение площадей равно отношению оснований (то есть сторон, к которым эта общая высота проведена).
Пусть h1 - расстояние от вершины В до АС в каком-то треугольнике АВС, и в другом треугольнике А'C'B сторона А'C', A' и C' - лежат на АС, вершина В общая. Тогда h1 и есть общая высота, Sabc = AC*h1/2; Sba'c' = A'C'*h1/2; ну, и осталось поделить одно на другое. Важно, чтобы стороны АС и А'С' лежали на одной прямой, и треугольники АВС и А'ВС' имели общую вершину В.
Заклинание второе. Если у треугольников общий угол, а стороны этого угла в треугольниках относятся, как p1/q1 и p2/q2, то площади относятся как (p1/q1)*(p2/q2); Никакого подобия тут нет! Это довольно просто увидеть из формулы для площади S = a*b*sinC/2;
Вот теперь оружие готово, и можно стрелять.
Для начала найдем AL/AK.
Пусть ВК = x; КС = 2*х; ВС = 3*х;
Тогда АС/ВС = 1/4; АС = х*3/4;
AL/LK = AC/KC = 3/8;
AL = AK*3/(3 + 8) = AK*3/11;
AM = AB/5;
Поэтому (второе заклинание :)) Saml = Sabk*(1/5)*(3/11) = Sabk*3/55;
Sklmb = Sabk - Saml = Sabk*52/55;
Осталось произнести первое заклинание (для треугольников АВС и АВК, ясно, что площадь АВК равна трети от площади АВС).
Sabc = Sabk*3; :)))
Sabc = (55/52)*Sklmb*3 = 55*3 = 165;