Начерти тетраэдр SABC. Проведи высоту SO. Точка О является центром вписанной и описанной окружности, поскольку в тетраэдре все основания - правильные треугольники. Тебе нужно найти высоту тетраэдра. ЕЕ найдем из треугольника SOB, где ОВ - радиус описанной окружности. И находится он по формуле R = a/√3, где а - сторона треугольника. ОВ = 8/√3 см. По теореме пифагора высота OF = √ (64 - 64/3) = 8√2/√3 см Ортогональной проекцией боковой грани является равнобедреннй треугольник, основание которого 8 см, а высота равна высоте тетраэдра. Поэтому чертишь отрезок 8 см и со средины отрезка проводишь перпендикуляр равный высоте тетраэдра, которую мы вычислили. Соединяешь вершины и почучаешь ортогональную проекцию. ЕЕ площадь: S = 1/2 * 8 * 8√2/√3 = 32√2/√3 см^2 Если не нравятся корни в ответах, то калькулятор, хотя обычно ответ принято оставлять в такой форме.
Свойство: Если противоположные стороны четырехугольника попарно параллельны, то этот четырехугольник — параллелограмм.
AB и АЕ принадлежат плоскости ВАЕ. DC и DE принадлежат плоскости CDF. Плоскость ВАЕ параллельна плоскости CDF, так как АВ||DC, а АЕ||DF. Прямая m||ВС, значит она параллельна и EF, так как ВС||EF. НР||ЕF, так как НР принадлежит прямой m. НЕ||РF, так как отрезки НЕ и РF лежат в параллельных плоскостях. Итак, в четырехугольнике НРFE противоположные стороны попарно параллельны, значит НРFE - параллелограмм.
ответ:yгол С= 63 ГРАДУСА
Объяснение: