Так как AK - биссектриса, то: при делении точкой отрезка на 2 части, относящиеся как m к n, есть формула для вычисления координат этой точки: ищем длины AB и AC: используем формулу: находим координаты точки K: теперь определим вид треугольника для этого используем теорему косинусов: для начала найдем длину BC: вид треугольника будем определять по косинусу самого большого угла; если cos<0, то угол тупой; если cos=0, то угол прямой; если cos>0, то угол острый. Против большей стороны лежит больший угол, поэтому запишем теорему косинусов для AC и косинуса угла B подставим значения: cosB<0 поэтому угол тупой и треугольник тупоугольный ответ: треугольник тупоугольный
Так как AK - биссектриса, то: при делении точкой отрезка на 2 части, относящиеся как m к n, есть формула для вычисления координат этой точки: ищем длины AB и AC: используем формулу: находим координаты точки K: теперь определим вид треугольника для этого используем теорему косинусов: для начала найдем длину BC: вид треугольника будем определять по косинусу самого большого угла; если cos<0, то угол тупой; если cos=0, то угол прямой; если cos>0, то угол острый. Против большей стороны лежит больший угол, поэтому запишем теорему косинусов для AC и косинуса угла B подставим значения: cosB<0 поэтому угол тупой и треугольник тупоугольный ответ: треугольник тупоугольный
угол 1=135
угол2=45
Объяснение:
x это угол 2, 3x это угол 1
уравнение:
x+3x=180 (односторонние углы при двух параллельных прямых и секущей)
4x=180
x=180:4
x= 45
45 градусов = угол 2, 3x=3*45=135 градусов = 1 угол