Пусть в треугольнике ABC угол A равен a, угол C равен b, проведены биссектрисы AD и CE, которые пересекаются в точке O (см. рисунок). Рассмотрим треугольник AOC. Сумма его углов равна 180 градусам, тогда угол AOC равен 180-1/2BAC-1/2BCA=180-DAC-ECA=180-1/2(a+b). Угол, под которым пересекаются две прямые - это наименьший из углов, которые получаются при их пересечении. Докажем, что угол EOA будет меньше угла AOC, тогда угол EOA - угол, под которым пересекаются биссектрисы. Действительно, угол EOA является смежным с углом AOC, тогда он равен 1/2(a+b). Так как a+b<180, 1/2(a+b)<90 и 1/2(a+b)<180-1/2(a+b), то есть, какими бы ни были углы a и b, угол EOA всегда будет меньше угла AOC. Окончательный ответ - 1/2(a+b).
1) 1 случай: если внешний угол при основании, тогда смежный с ним 180-116=64, второй угол при основании тоже = 64, а угол при вершине=180-64-64=52 2 случай: если внешний угол при вершине, тогда смежный с ним=64, а сумма углов при основании=116. Тк углы при основании равнобедренного треугольника равны, то каждый будет равен 116:2=58. 2) 1 случай: аналогично. Углы при основании=180-100=80, угол при вершине=180-80-80=20 2 случай: угол при вершине=80. Сумма углов при основании=100. Каждый угол при основании =100:2=50