1) Расстояние от точки до прямой измеряется длиной отрезка, проведенного перпендикулярно между ними. FH ⊥ЕD.
∠Н=∠C=90°
Искомое расстояние - длина отезка FH.
Т.к. ЕF биссектриса, в прямоугольных треугольниках ∆ СЕF и ∆ HЕF
∠СЕF=∠HEF, EF- общая гипотенуза.
Если гипотенуза и острый угол одного прямоугольного треугольника соответственно равны гипотенузе и острому углу другого прямоугольного треугольника, то такие треугольники равны.
∆ СЕF=∆ HЕF Сходственные элементы равных треугольников равны. =>
FH=FC=13 см.
2) Строим острый угол В. Из вершины угла проводим окружность радиусом равным катету, и отмечаем точку пересечения А. Так как треугольник — прямоугольный, то восстанавливаем перпендикуляр из точки А. Полученная точка пересечения С. Соединяем попарно вершины треугольника. Искомый треугольник построен. (2 картинка)
3) задание на картинке
Объяснение:
а) Из условия следует, что угол ВМК должен быть равен углу А. В треугольниках МВК и АВС угол В общий. Треугольники подобны по двум углам (первый признак подобия) . Следовательно, КМ: АС=ВК: ВС
б) Площадь треугольника АВС равна сумме площадей четырёхугольника AKMC (S1) и площади треугольника МВК (S2). Значит, площадь треугольника АВС относится к площади треугольника МВК как 9:1. Отношение площадей подобных фигур равно квадрату коэффициента подобия. 9=3^2. Коэффициент подобия равен 3. Тогда АВ: ВМ=3
Объяснение: