61 градус
Объяснение:
Для решения рассмотрим рисунок (https://bit.ly/2Rmvpw4).
Отношение длин отрезков ОС / ОД и ОА / ОВ одинаково.
ОС / ОД = 30 / 10 = 3.
ОА / ОВ = 12 / 4 = 3.
Угол ВОД = АОС как вертикальные углы.
Тогда треугольник ВОД и АОД подобны по двум пропорциональным сторонам и углу между ними с коэффициентом подобия 3.
В треугольника ОВД определим величину угла ОДВ. ОДВ = 180 – ДВО – ДОВ = 180 – 61 – 52 = 670.
Отрезки ВД и АС, ОД и ОС есть сходственные стороны, тогда угол АСО = ВДО = 610.
ответ: Угол АСО равен 610.
1) Отношением двух отрезков называется частное их длин. Например,
АВ = 4 см, КР = 8 см
АВ : КР = 4 : 8 = 1 : 2
2) Пропорциональными называют пары отрезков, если равны их отношения. Например, если
АВ = 4 см, КР = 8 см, CD = 12 см, EF = 24 cм, то
АВ : CD = KP : EF = 1 : 3,
отрезки АВ и КР пропорциональны соответственно отрезкам CD и EF.
3) Подобными называются треугольники, если между их вершинами можно установить такое взаимно однозначное соответствие, что соответствующие углы равны и соответствующие стороны пропорциональны.
Например, треугольники АВС и МРК подобны, если
∠А = ∠М, ∠В = ∠Р, ∠С = ∠К и
АВ : МР = АС : МК = ВС : РК.
4) Число, равное отношению соответствующих сторон подобных треугольников, называется коэффициентом подобия. Обозначается k.
Коэффициент подобия показывает, чему равно отношение сторон подобных треугольников.
Чтобы его найти, надо найти отношение соответствующих сторон.
Например, если треугольники АВС и МРК подобны, то
АВ : МР = АС : МК = ВС : РК = k
5) Отношение площадей подобных треугольников равно квадрату коэффициента подобия.
Например, если треугольники АВС и МРК подобны, то
Sabc : Smkp = k²