М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
dariadaria6
dariadaria6
17.03.2020 22:23 •  Геометрия

Стороны параллелограмма равны 15 см и 20 см,а расстояние между меньшими сторонами равно 4 см.найти расстояние между большими сторонами параллелограмма, используя s

👇
Ответ:
Polinkamalina2017
Polinkamalina2017
17.03.2020
Кратчайшее расстояние между меньшими или большими сторонами - это перпендикуляр, следовательно это высота. 
S=hb=h_1a\\
S=4*15=h_1*20\\
h_1=3
ответ: 3 см
4,8(16 оценок)
Открыть все ответы
Ответ:
vasa2283
vasa2283
17.03.2020

∠BAC = ∠ACD как накрест лежащие углы при AB || CD и секущей AC.

AB = CD, следовательно, ΔABK = ΔCND по гипотенузе и острому углу

У равных треугольников соответствующие элементы (стороны, углы) равны, т.е. BK = DN; CN = AK.

Рассмотрим прямоугольный треугольник BKC: по т. Пифагора

BC^2=CK^2+BK^2=CK^2+36                                       (*)

Рассмотрим прямоугольный треугольник ABC: по т. Пифагора

AC^2=AB^2+BC^2~~~\Rightarrow~~~ BC^2=AC^2-AB^2

Подставляем теперь в равенство (*), получаем

AC^2-AB^2=CK^2+36

AB² найдем по теореме Пифагора из прямоугольного треугольника ABK, значит

AB^2=BK^2+AK^2=36+CN^2

Все данные у нас есть, осталось решить уравнение

AC^2-(36+CN^2)=CK^2+36\\ (2CN+KN)^2-36-CN^2=(CN+KN)^2+36\\ 4CN^2+4CN\cdot KN+KN^2-36-CN^2=CN^2+2CN\cdot KN+KN^2+36\\2CN^2+2CN\cdot KN-72=0~|:2\\ CN^2+CN\cdot KN-36=0\\ CN^2+5CN-36=0

Получили квадратное уравнение, которое можно решить через дискриминант

D=5^2-4\cdot 1\cdot (-36)=25+144=169

CN=\dfrac{-b-\sqrt{D}}{2a}=\dfrac{-5-13}{2\cdot 1}=-9 - не удовлетворяет условию

CN=\dfrac{-b+\sqrt{D}}{2a}=\dfrac{-5+13}{2\cdot 1}=4 см

Следовательно, AC = 2*4 + 5 = 13 см, тогда

S_{ABC}=\dfrac{1}{2}\cdot AC\cdot BK=\dfrac{1}{2}\cdot 13\cdot 6=39 см²

S_{ABCD}=2S_{ABC}=2\cdot 39=78 см²

Второй решения:

У треугольников ABK и BKC прямые углы равны и ∠ABK = ∠BCK, следовательно, ΔABK ~ ΔBKC, из подобия треугольников следует, что BK/CK = AK/BK

\dfrac{6}{CN+5}=\dfrac{CN}{6}~~~\Rightarrow~~~ CN^2+5CN-36=0

Такое же уравнение как в первом

ответ: 78 см².


Пусть abcd - прямоугольник, bk и dn - высоты треугольников abc и acd соответственно, kn = 5 см, bk =
4,8(66 оценок)
Ответ:
Nadezhda136
Nadezhda136
17.03.2020

Пусть прямая а пересекает АС в т.В1, ВС в т.А1. 

А1В1 делит  ∆ АВС на две равновеликие части, т. е. на треугольник и четырехугольник равной площади.  

S ∆ А1B1C=S BАB1А1= S ∆ABC:2

Прямоугольные  треугольники с общим острым углом  подобны. 

∆ CA1B1~ ∆ СAB. 

Площади подобных фигур относятся как квадраты отношения линейных размеров их сходственных элементов. 

k²=2 ⇒ k=√2

АВ:А1В1=√2 ⇒ A1B1=AB:√2

АВ найдем из ∆ АВD.

Примем коэффициент отношения отрезков AD:CD равным х.

Высота, проведенная к гипотенузе, есть среднее пропорциональное между проекциями катетов на гипотенузу. 

Т.е. ВD² =АD•CD 

Тогда 80=40•9x² 

9х²=2⇒ х=(√2)/3 и  AD=9•(√2)/3 =3√2

 Катет есть среднее пропорциональное между гипотенузой и проекцией этого катета на гипотенузу.

АВ²= BD²+AD²

АВ=√(80+9•2)=√49•2=7√2     ⇒ A1B1=7√2:√2=7


Впрямоугольном треугольнике abc ( b=90°) отрезок bd-высота, проведённая к стороне ac, ad: dc=9: 40,
4,7(37 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ