Если прямая (DC), параллельна какой-нибудь прямой (AB), расположенной в плоскости (α), то она параллельна самой плоскости. Если плоскость проходит через прямую (DC), параллельную другой плоскости (α), и пересекает эту плоскость, то линия пересечения (EF) параллельна первой прямой (DC). Расстояние от прямой DC до плоскости α - это перпендикуляр из любой точки этой прямой на плоскость α. Итак, в прямоугольном треугольнике АЕD катет АЕ равен по Пифагору АЕ=√(AD²-DE²)=√(36²-18²)=18√3. Угол между двумя пересекающимися плоскостями равен углу между прямыми, по которым они пересекаются с любой плоскостью, перпендикулярной их линии пересечения. То есть угол между плоскостью α и плоскостью квадрата - это угол EAD, cинус которого равен отношению противолежащего катета к гипотенузе: Sinβ=ED/AD=18/36=1/2. Значит угол между плоскостями равен 30°. Площадь проекции квадрата на плоскость α - это площадь прямоугольника AEFB, равная S=AB*AE=36*18√3=648√3см²
1) В равнобедренном треугольнике ABC с основанием AС проведены биссектрисы CD и AF. Определите велечину угла AOC, если угол при основании равне 70 градусов. 2) В равнобедренном треугольнике ABC с основанием AC проведена биссектриса AP. Найдите угол APB, если угол ACB равен 74 градуса. 3) В треугольнике ABC угол A равен 64 градуса,биссектрисы углов B и C пересекаются в точке D. Найдите угол CDB. 4) Бисскетрисы AD и BE треугольника ABC пересекаются в точке O. Найдите угол С треугольника,если он на 20 градусов меньше угла AOB Попроси больше объяснений Следить Отметить нарушение Iraklobster 14.05.2013 Реклама
ответы и объяснения Shuichi Shuichi Середнячок 1) т.к. СD, AF - биссектрисы, углы АСО=САО=70/2=35 градусов. угол АОС=180-(35+35)=180-70=110 градусов 2) угол РАС=74/2=37 градусов, угол АРС=180-(37+74)=180-111=69 градусов, угол АРВ-смежный с углом АРС, значит, угол АРВ=180-69=111 градусов 3) если треугольник равнобедренный (просто этого не указано в условии задачи), то: угол В=180-(64+64)=52, значит, угол ВDC=52/2=26 градусов, угол ВСD=64/2=32, угол СDB=180-(32+26)=122 градуса
Расстояние от прямой DC до плоскости α - это перпендикуляр из любой точки этой прямой на плоскость α.
Итак, в прямоугольном треугольнике АЕD катет АЕ равен по Пифагору
АЕ=√(AD²-DE²)=√(36²-18²)=18√3.
Угол между двумя пересекающимися плоскостями равен углу между прямыми, по которым они пересекаются с любой плоскостью, перпендикулярной их линии пересечения. То есть угол между плоскостью α и плоскостью квадрата - это угол EAD, cинус которого равен отношению противолежащего катета к гипотенузе: Sinβ=ED/AD=18/36=1/2. Значит угол между плоскостями равен 30°.
Площадь проекции квадрата на плоскость α - это площадь прямоугольника AEFB, равная S=AB*AE=36*18√3=648√3см²