Рассмотрим треугольник, который является четвертью ромба.
Половина диагонали а = R/sin α/2, половина другой диагонали b=R/cos α/2.
Площадь ромба равна половине произведения диагоналей
S = 2a*2b/2 = 2ab = 2(R/sin α/2)(R/cos α/2)
используем формулу синуса двойного угла
Sin 2β = 2sinβ*cosβ. sin α/2 * cos α/2 = (sin α)/2
S = 2R²/((sin α)/2) = 4R²/sin α = 4*(√5)²/sin 30°=8*5 = 40
https://tex.z-dn.net/?f=S_%7BABD%7D%3D%5Cfrac%7B1%7D%7B2%7D%5Ccdot%20AD%5Ccdot%20BD%5Ccdot%20%5Csin%7B%5Calpha%7D%5C%5C%5C%5CS_%7BCBD%7D%3D%5Cfrac%7B1%7D%7B2%7D%5Ccdot%20CD%5Ccdot%20BD%5Ccdot%20%5Csin%7B(180%5E%7B%5Ccirc%7D-%5Calpha)%7D%3D%5Cfrac%7B1%7D%7B2%7D%5Ccdot%20CD%5Ccdot%20BD%5Ccdot%20%5Csin%7B%5Calpha%7D%5C%5C%5C%5C%5Cfrac%7BS_%7BCBD%7D%7D%7BS_%7BABD%7D%7D%3D%5Cfrac%7B1%2F2%5Ccdot%20%5Ccdot%20CD%5Ccdot%20BD%5Ccdot%20%5Csin%7B%5Calpha%7D%7D%7B1%2F2%5Ccdot%20AD%5Ccdot%20BD%5Ccdot%20%5Csin%7B%5Calpha%7D%7D%3D%5Cfrac%7BCD%7D%7BAD%7D%3D%5Cfrac%7B13x%7D%7B2x%7D%5C%5C%5C%5CS_%7BCBD%7D%2BS_%7BABD%7D%3D75%3D15x%5CRightarrow%20x%3D5%5C%5C%5C%5CS_%7BABD%7D%3D2x%3D10%5C%5C%5C%5COtvet%5C!%5C!%3A%5C%3B10.
Объяснение:
Использовано свойство окружности, вписанной ромб; свойство катета против угла в 30 градусов; формула площади ромба через синус его угла.