Abcda1b1c1d1- куб. точка к-середина ребра ad. наидите площадь сечения, проходящего через точки b1, с, к, если ребро куба равно 12. (если можно с рисунком)
Сделаем рисунок и соединим вершины С и D данных треугольников. Обозначим точку пересечения CD с АВ буквой Н. Рассмотрим ∆ CAD и ∆ CBD АС=СВ и AD=BD по условию; сторона СD- общая. ∆ CAD = ∆ CBD по 3-му признаку равенства треугольников. Тогда ∠АСD=∠BCD; ∠CDA=∠CDB. СD- биссектриса углов при вершинах С и D равнобедренных треугольников. По свойству равнобедренных треугольников биссектриса, проведенная к основанию, является еще и высотой и медианой. ⇒ СН и DН - медианы этих треугольников, а поскольку у них общее основание АВ, то CD проходит через середину АВ, ч.т.д.
Сделаем рисунок и соединим вершины С и D данных треугольников. Обозначим точку пересечения CD с АВ буквой Н. Рассмотрим ∆ CAD и ∆ CBD АС=СВ и AD=BD по условию; сторона СD- общая. ∆ CAD = ∆ CBD по 3-му признаку равенства треугольников. Тогда ∠АСD=∠BCD; ∠CDA=∠CDB. СD- биссектриса углов при вершинах С и D равнобедренных треугольников. По свойству равнобедренных треугольников биссектриса, проведенная к основанию, является еще и высотой и медианой. ⇒ СН и DН - медианы этих треугольников, а поскольку у них общее основание АВ, то CD проходит через середину АВ, ч.т.д.
S=6*12²=6*144=864