Треугольник ВКС
<ВКС=90 градусов
<С=45 градусов
<КВС=180-(90+45)=45 градусов
Треугольник прямоугольный равнобедренный
ВК=КС=3 см
Т к по условию задачи
DK=KC. то
DC=3•2=6 cм
<D=<B=(360-45•2):2=270:2=135 градусов
Треугольник ВDK равен треугольнику ВКС по первому признаку равенства прямоугольных треугольников-по двум катетам,поэтому
DB=BC,а
<ВDC=<C=45 градусов
<DBC=180-45•2=90 градусов
<АВD=<В-<DBC=135-90=45 градусов
<ADB=180-45•2=90 градусов
А можно было найти угол DBC,aон равен 90 градусов,и утверждать,что
<АDB=<DBC=90 градусов,как внутренние накрест лежащие углы при
АВ || DC при секущей DB
Объяснение:
Задание 3
Так как треугольник равнобедренный то углы при его основании равны,следовательно угол 1 равен углу К и они оба равны по 48 градусов
Угол 2 называют внешним,а по определению внешний угол и смежный с ним внутренний угол в сумме равны 180 градусов,поэтому угол 2 равен
180-48=132 градуса
Задание 4
По условию МО=ОК , а углы ВМО и АКО равны между собой.
Как вертикальные,равны между собой и углы МОВ и АОК
И теперь мы можем утверждать,что треугольники МОВ и АОК равны между собой по второму признаку равенства треугольников-если сторона и два прилежащих к ней угла одного треугольника равны стороне и двум прилежащим к ней углам второго треугольника,то Треугольники равны между собой
Задание 5
Речь идёт о равнобедреном треугольники,т к по условию ВМ=ВС,
МК-биссектриса треугольника ВМС и т к точка А лежит на биссектрисе,то и в треугольнике ВАС АК тоже биссектриса и делит угол ВАС пополам,поэтому угол ВАК равен
88:2=44 градуса
Объяснение: