См. рисунок в приложении наклонная FA⊥ AD , так как её проекция ВА⊥AD наклонная FO⊥AC , так как её проекция ВО ⊥ AC ( BD⊥AC- диагонали квадрата взаимно перпендикулярны)
По теореме Пифагора диагональ квадрата АС=√(4²+4²)=4√2 Диагонали квадрата в точке пересечения делятся пополам АО=ОС=ВО=ОD=2√2
По теореме Пифагора из Δ AFB AF²=AB²+FB²=4²+8²=16+64=80 AF=√80=4√5 Аналогично расстояние FC до стороны CD равно 4√5
По теореме Пифагора из Δ FBO FO²=AO²+FB²=(2√2)²+8²=8+64=72 FO=√72=6√2
Расстояние до стороны АВ; ВС и диагонали BD равно FB=8
См. рисунок в приложении наклонная FA⊥ AD , так как её проекция ВА⊥AD наклонная FO⊥AC , так как её проекция ВО ⊥ AC ( BD⊥AC- диагонали квадрата взаимно перпендикулярны)
По теореме Пифагора диагональ квадрата АС=√(4²+4²)=4√2 Диагонали квадрата в точке пересечения делятся пополам АО=ОС=ВО=ОD=2√2
По теореме Пифагора из Δ AFB AF²=AB²+FB²=4²+8²=16+64=80 AF=√80=4√5 Аналогично расстояние FC до стороны CD равно 4√5
По теореме Пифагора из Δ FBO FO²=AO²+FB²=(2√2)²+8²=8+64=72 FO=√72=6√2
Расстояние до стороны АВ; ВС и диагонали BD равно FB=8
ответ: 77 см²
Объяснение: В ∆ РЕТ угол Е =90° как смежный углу РЕМ. Сумма острых углов прямоугольного
треугольника 90°, поэтЛму угол РТЕ=45°;
∆ РЕТ - равнобедренный, и высота параллелограмма РЕ=ТЕ=7 см.
Площадь паралл
елограмма равна произведению высоты на сторОну, к котоРой проведена.
Ѕ (МРКТ)=РЕ•МТ.
.
МТ=МЕ+ЕТ=4+7=11 (см)
Ѕ (МРКТ)=47•11=77 см²