Боковые грани призмы - параллелограммы, и площадь каждого равна произведению высоты на основание.
Примем за основания граней (параллелограммов) боковые ребра. Они равны, а высоты - стороны треугольника в перпендикулярного сечения призмы, они разной длины.
Треугольник сечения подобен треугольнику со сторонами 9, 10, 17, площадь которого, найденная по ф.Герона, равна 36 (см²) (Можно без труда проверить)
Площади подобных фигур относятся, как квадрат коэффициента подобия их линейных элементов.
Если площадь сечения обозначить S, а площадь треугольника со сторонами 9,10,17 – S1, то S:S1=k²
S:S1=144:36=4
k²=3, ⇒k=√4=2
Следовательно, периметр сечения равен 2•(9+10+17)=72 см
Площадь боковой поверхности призмы равна произведению периметра перпендикулярного сечения на боковое ребро.
S=72•8=576 см²
nu
Online-Otvet.ru
Поиск по во Категории
Задать во О проекте
Обратная связь
home Во и ответы folder Геометрия
kndeta
kndeta
Во по геометрии ОЧЕНЬ К плоскости ромба ABCD, у которого угол А равен 45, АВ=8см градусов, проведен перпендикуляр МС длиной 7см. Найдите расстояние от точки М до прямой
построй рисунок ---начни с угла А=45---углы В С D
точка М висит над углом С---найти расстояние от М до АВ
сделай дополнительное построение---над вершиной D построй точку М1
(это параллельный перенос)---тогда М1D=MC=7см---из вершины D опусти перпендикуляр на АВ в точку К (это расстояние от D до АВ)--тогда DK это
проекция М1К на плоскость ромба--это и есть расстояние от т. М(М1)
до прямой АВ
теперь длина М1К=
треуг.АКD прямоугольн.--угол К =90--угол А=45
сторона АD=8см, т.к. все стороны ромба равны--тогда КD=AD*sin45=8*√2/2=4√2 см
треуг.КDM1 прямоугольн---угол КDM1=90(это перпендикуляр к плоскости)
КМ1-гипотенуза КМ1=√(М1D)^2+(DK)^2=√( 7^2+(4√2)^2)=√49+32=√81=9см
расстояние от точки М до прямой АВ ==9см