Если провести сечение пирамиды через ее высоту перпендикулярно боковой грани, то получится прямоугольный треугольник CNK, где CN - высота пирамиды - один из катетов треугольника, NK - второй катет (след сечения основания пирамиды, N - прямой угол, K - угол равный 60 градусам (из условия), CK - гипотенуза (высота боковой грани пирамиды).
Центр O вписанного в пирамиду шара лежит на CN так, что ON равно его радиусу. Из точки O проведем перпендикуляр на гипотенузу до точки M. OM также должен быть равен радиусу шара. Рассматривая это построение, нетрудно показать, что точка O делит высоту CN в отношении 1:2. Таким образом радиус вписанного шара равен 3 (9/3).
Объем шара (4/3)*π*3*3*3 = π*36 или примерно 3.14*36 = 113
Объяснение:
1)
фото чертежа прилагаю.
Проведём высоту ВК.
sin 30°=BK/BC
1/2=BK/12
BK=12/2=6 см .
S(ABCD)=BK*(AB+DC)/2=6*(6+16)/2=
=6*11=66 см² площадь трапеции.
ответ: 66см²
2)
∆АВС- равносторонний по условию.
АВ=ВС=АВ.
Формула нахождения периметра равностороннего треугольника
Р=3*АВ
АВ=Р/3=18/3=6 см сторона треугольника.
S=AH*BC/2=3*6/2=9 см². площадь треугольника
ответ: площадь треугольника равна 9см²
3)
1) 80:2=40см полупериметр прямоугольника (АВ+ВС)
2) пусть сторона АВ=2х см, тогда сторона ВС=6х. Составляем уравнение.
2х+6х=40
8х=40
х=40/8
х=5
АВ=2х, подставляем значение х.
2*5=10см сторона АВ.
ВС=6х, подставляем значение х.
6*5=30 см сторона ВС
S=AB*BC=10*30=300см² площадь прямоугольника АВСD
ответ: 300см²