Так как прямые, разделяющие треугольник на равные по площади фигуры, параллельны стороне, то они делят его на 1 треугольник и 4 трапеции. Площадь каждой из получившихся фигур, а, значит, и площадь треугольника, по условию равна 1/5 площади исходного треугольника. Площадь правильного треугольника находят по формуле S=(a²√3):4 S=(100√3):4=25√3 Тогда площадь треугольника, периметр которого нужно найти, равна S:5= 5√3 Найдем его сторону из формулы площади правильного треугольника: 5√3=(a²√3):4 20=a² a=√20=2√5 см Р=3*2√5=6√5
Решение: из определения равнобедренного Δ-ка, которое гласит, что треугольник называется равнобедренным, если у него две стороны равны( они же называются боковыми( в нашей задаче это равные боковые стороны АВ и ВС), а третья сторона называется основанием( в нашей задаче это АС) следует, что наш Δ- ик- равнобедренный. по определению: внешним углом при данной вершине(в нашей задаче при вершине А) называется угол, смежный с внутренним углом Δ-ка при этой вершине. по теореме 2.1( в учебнике Погорелова): сумма смежных углов равна 180°.То есть внешний угол при вершине А, равный 167°( по условию задачи)+ внутренний смежный ему угол при этой же вершине А= 180°. Отсюда следует, что внутренний угол при вершине А= 180°-167°, то есть равен 13°. По теореме 3.3 в учебнике по геометрии Погорелова: В равнобедренном треугольнике углы при основании равны. А это значит, что внутренние углы( угол А и угол С) при основании АС равны. Мы уже нашла угол А, он равен 13°. Значит и угол С равен 13°.
по свойству параллельных прямых односторонние углы в сумме дают 180°
значит угол 1 равен 180°÷5 (тк 5 частей всего, 1 приходится на 1 угол и 4 на 2) =36°
угол 2 в 4 раза больше 1, значит он равен 36°×4=144°
угол 3 и 2 вертикальные, значит кгол 3 равен углу 2 и равен 144°