Соединим точки A и D, D и C, С и B. Пусть AC∩BD=E.
∠ADB и ∠ACB вписанные и опирающиеся на хорду AB. Тогда они равны. Т.к. AB - диаметр, ∠ADB = ∠ACB = 90°.
Применив т. об отрезках пересекающихся хорд к хордам AC и DB, получим AE*EC=DE*EB.
Обозначим DE=a, EB=b, AE=c → с*EC=a*b → EC=a*b/c
AC ּ AE + BD ּ BE = (AE+EC)*AE+(BE+ED)*BE=c²+a*b+b²+a*b=c²+2ab+b²=(c²-a²)+(a+b)²=[по т. Пифагора для ΔADE (c²-a²)=AD². DB²=(DE+EB)²=(a+b)²]=AD²+DB²=[по т. Пифагора для ΔADB]=AB²
Т.к. AB - диаметр окружности, то значение AC ּ AE + BD ּ BE не зависит от положения точки E.
ответ: ∠1 = 16°; ∠2 = 119°;
Так как ABCD - это квадрат, то его диагональ AC - это биссектриса. И поэтому прямой угол MCN был разделен на два равных угла биссектрисой AC. Тогда:
∠MCA = ∠NCA = 90° : 2 = 45°.
Теперь докажем, что треугольники MAC и NAC являются равными. У них есть две равные стороны (MC = CN и общая AC) и равные углы (∠MCA = ∠NCA). Поэтому они действительно равны.
И тогда:
∠MAC [угол 1] = ∠NAC = ∠MAN : 2 = 32° : 2 = 16°.
Теперь найдем угол ANC (или угол 2). Воспользуемся тем, что сумма углов треугольника равна 180°:
∠ANC [угол 2] = 180° - ∠CAN - ∠NCA = 180° - 16° - 45° = 119°.