Формула длины высоты через составные отрезки гипотенузы: h = √AO*OC, где АО иОС отрезки,равные 25см и 9см. Тогда высота,проведённая к гипотенузе AС прямоугольного треугольника ABC равна √25*9 = √225 = 15. В прямоугольном треугольнике АВО АВ является гипотенузой, а катеты это отрезок АО = 25 и высота ВО = 15.
Значит гипотенуза АВ треугольника АВО АВ=√25²+15² = √850 = 5√34
Но АВ это как раз больший катет треугольника АВС он равен 5√34
А есть еще теорема о высоте прямоугольного треугольника. Из которой вытекает, что катет
АВ² = АС*АО (квадрат катета равен произведению гипотенузы на прилежащий к этому катету отрезок гипотенузы, на которые высота делит гипотенузу)
Тогда АВ = √34*25 = √850 = 5√34
ВВ₁ и DD₁ - медианы, значит
AD₁ = D₁B = AB₁ = B₁D = 3/2 см
ΔABD равнобедренный, поэтому
∠ABD = ∠ADB,
BD₁ = DB₁, BD - общая сторона для ΔDD₁B и ΔBB₁D, значит эти треугольники равны по двум сторонам и углу между ними, ⇒
BB₁ = DD₁.
Медианы точкой пересечения делятся в отношении 2 : 1, считая от вершины.
Обозначим OD₁ = OB₁ = x, тогда OD = OB = 2x.
ΔOBD равнобедренный, значит ∠OBD = ∠ODB = 40°.
∠D₁OB = ∠OBD + ∠ODB = 80° как внешний угол ΔDOB.
Рассмотрим ΔD₁OB. По теореме косинусов
D₁B² = OD₁² + OB² - 2·OD₁·OB·cos 80°
9/4 = x² + 4x² - 2 · x · 2x · cos80°
9/4 = 5x² - 4x² · cos80°
9/4 = x² (5 - 4cos80°)
x² = 9 / (4(5 - 4cos80°))
x = 3 / (2√(5 - 4cos80°))
BB₁ = 3x = 9 / (2√(5 - 4cos80°)) или
Если необходимо числовое значение, а не выражение, можно взять значение cos 80° по таблице, тогда получится:
cos 80° ≈ 0,1736
BB₁ = 9 / (2√(5 - 4cos80°)) ≈ 2,2