М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Zangerange
Zangerange
09.03.2020 03:49 •  Геометрия

А4 - сторона правильного четырехугольника, P - периметр четырехугольника, S - прощать четырехугольника, R - радиус описанной окружности, r - радиус вписанной окружности R r a4 P S
1 √2
2 6
3 8 Геометрия девятый класс

👇
Открыть все ответы
Ответ:

Объяснение:

Дано:

<AOB и <COD

<COD  внутри <AOB

AO ┴ OD;  CO ┴ OB;

<AOB - <COD = 90°

Найти: <AOB и <COD.

Решение

Т.к . AO ┴ OD;  CO ┴ OB,

то <AOD = 90; <COB = 90°.

<COD = <AOD  - <AOC

<COD = <COB  - <DOB

<COD = 90° - <AOC

<COD = 90° - <DOB

Получим

<AOC = 90° - <COD

<DOB = 90° - <COD

Следовательно <AOC = <DOB

2) По условию: <AOB - <COD = 90°

Но если от всего угла  <AOB отнять <COD, то останутся два равных угла  <AOC и <DOB, значит, это их сумма равна 90°.

<AOC + <DOB = 90° =>

<AOC = <DOB = 90°/2 = 45°

3) <COD = 90° - <DOB

<COD = 90° - 45°=45°

4) <AOB = <AOC + <DOB + <DOB

<AOB = 45° + 45° + 45° = 135°

ответ: <AOB - 135°;  <COD =45°.


Даны два угла АОВ и DOC с общей вершиной. Угол АОВ расположен внутри угла DOC . Стороны одного угла
4,5(24 оценок)
Ответ:
vk2931416haker
vk2931416haker
09.03.2020
АВ = Рabcd : 4 = 12 : 4 = 3 см
ВВ₁ и DD₁ - медианы, значит
AD₁ = D₁B = AB₁ = B₁D = 3/2 см

ΔABD равнобедренный, поэтому
∠ABD = ∠ADB,
BD₁ = DB₁, BD - общая сторона для ΔDD₁B и ΔBB₁D, значит эти треугольники равны по двум сторонам и углу между ними, ⇒
BB₁ = DD₁.

Медианы точкой пересечения делятся в отношении 2 : 1, считая от вершины.
Обозначим OD₁ = OB₁ = x, тогда OD = OB = 2x.
ΔOBD равнобедренный, значит ∠OBD = ∠ODB = 40°.
∠D₁OB = ∠OBD + ∠ODB = 80° как внешний угол ΔDOB.

Рассмотрим ΔD₁OB. По теореме косинусов
D₁B² = OD₁² + OB² - 2·OD₁·OB·cos 80°
9/4 = x² + 4x² - 2 · x · 2x · cos80°
9/4 = 5x² - 4x² · cos80°
9/4 = x² (5 - 4cos80°)
x² = 9 / (4(5 - 4cos80°))
x = 3  / (2√(5 - 4cos80°))

BB₁ = 3x = 9  / (2√(5 - 4cos80°)) или
BB_{1} = \frac{9}{2 \sqrt{5 - 4cos 80^{0} } }

Если необходимо числовое значение, а не выражение, можно взять значение cos 80° по таблице, тогда получится:
cos 80° ≈ 0,1736
BB₁  = 9  / (2√(5 - 4cos80°)) ≈ 2,2
4,5(76 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ