d диаметр основания конуса l образующая конуса h высота конуса d = l = 2 => осевое сечения конуса - правильный треугольник со сторонами = d 1) Площадь осевого сечения конуса s: s = h*d h = d² - (d/2)² = d² - d²/4 = 3d²/4 = 3 s = h*d = 3*2 = 6 > 1,5 ответ: не может быть = 1,5 2) сечение, параллельное основанию, площадь которого равна 1 площадь сечения, параллельное основанию = от 0 до площади основания площадь основания s: s = πr² = πd²/4 = π*2²/4 = π 1∈]0;π[ ответ: может = 1 3) Наибольшая площадь треугольного сечения s: s = 6 > 2 ответ: наибольшая площадь треугольного сечения не равна 2 4) сечения конуса площадь осевого сечения = 6 площадь основания = π ответ: не существует сечение, площадь которого = 18 5) Расстояние от центра основания конуса до образующей = (d/2)*sin60 = (2/2)√3/2 = √3/2 ответ: расстояние от центра основания конуса до образующей = √3/2 6) расстояние от вершины конуса до основания это высота h = 3 ответ: не равно 2
d диаметр основания конуса l образующая конуса h высота конуса d = l = 2 => осевое сечения конуса - правильный треугольник со сторонами = d 1) Площадь осевого сечения конуса s: s = h*d h = d² - (d/2)² = d² - d²/4 = 3d²/4 = 3 s = h*d = 3*2 = 6 > 1,5 ответ: не может быть = 1,5 2) сечение, параллельное основанию, площадь которого равна 1 площадь сечения, параллельное основанию = от 0 до площади основания площадь основания s: s = πr² = πd²/4 = π*2²/4 = π 1∈]0;π[ ответ: может = 1 3) Наибольшая площадь треугольного сечения s: s = 6 > 2 ответ: наибольшая площадь треугольного сечения не равна 2 4) сечения конуса площадь осевого сечения = 6 площадь основания = π ответ: не существует сечение, площадь которого = 18 5) Расстояние от центра основания конуса до образующей = (d/2)*sin60 = (2/2)√3/2 = √3/2 ответ: расстояние от центра основания конуса до образующей = √3/2 6) расстояние от вершины конуса до основания это высота h = 3 ответ: не равно 2
Объяснение:
9x^2+z^2-9y^2+18=0⇒9x²-9y²+z²=-18⇒9x²/18-9y²/18+z²/18=-18/18⇒
x²/2-y²/2+z²/18=-1
это уравнение двуполостного гиперболоида