6) Хорды AB и CD пересекаются в точке E, тогда верно равенство
АE·BE=CE·DE
7) Длину окружности можно вычислить по двум формулам: C = 2πr или C = πd, где π – число «пи» (математическая константа, приблизительно равная 3,14) X Источник информации , r – радиус окружности, d – диаметр окружности.
8) Формула для вычисления площади круга
1) Площадь круга равна произведению квадрата радиуса на число пи (3.1415). 2) Площадь круга равна половине произведения длины ограничивающей его окружности на радиус.
9)Окружность называется вписанной в треугольник, если она касается всех его сторон. Окружность называется описанной около треугольника, если она проходит через все его вершины. Теорема 1. Центр окружности, вписанной в треугольник, является точкой пересечения его биссектрис.
6) Хорды AB и CD пересекаются в точке E, тогда верно равенство
АE·BE=CE·DE
7) Длину окружности можно вычислить по двум формулам: C = 2πr или C = πd, где π – число «пи» (математическая константа, приблизительно равная 3,14) X Источник информации , r – радиус окружности, d – диаметр окружности.
8) Формула для вычисления площади круга
1) Площадь круга равна произведению квадрата радиуса на число пи (3.1415). 2) Площадь круга равна половине произведения длины ограничивающей его окружности на радиус.
9)Окружность называется вписанной в треугольник, если она касается всех его сторон. Окружность называется описанной около треугольника, если она проходит через все его вершины. Теорема 1. Центр окружности, вписанной в треугольник, является точкой пересечения его биссектрис.
S = 675√3 см².
Объяснение:
Задача: Перпендикуляры, проведенные с некоторой точки пространства S на все стороны правильного треугольника ABC, имеют одну и ту же длину. Другая точка пространства J, удалена от этих перпендикуляров и от плоскости треугольника на 10 см. Расстояние SJ между данными точками равно 26 см. Вычислить площадь треугольника.
Другими словами, в правильную треугольную пирамиду (основание - правильный треугольник АВС, апофемы - высоты боковых граней - равны, значит вершина S проецируется в центр О основания) вписана сфера радиуса R = 10 cм, с центром в точке J, отстоящим от вершины S на 26 см.
В прямоугольном треугольнике SKJ по Пифагору найдем катет SK = √(SJ²-JK²) = √(26²-10²) = 24 см.
Прямоугольные треугольники SKJ и SOH подобны по острому углу OSH - общий. SO = SJ + JO = 26+10 = 36 см. Из подобия имеем:
SO/SK = OH/JK.
OH = JK·SO/SK = 10·36/24 = 15 см.
Отметим, что ОН = (1/3)·АН так как точка О - центр правильного треугольника, точка пересечения его высот и медиан. Тогда АН = 15·3 = 45 см. Это высота треугольника АВС.
Тогда по известной формуле h = (√3/2)·a находим сторону треугольника.
а = 45·2/√3 = 30√3 см.
Площадь правильного треугольника равна S = (√3/4)·a².
S = (√3/4)·(30√3)² = 2700·√3/4 = 675√3 см².