a = √18
Диагональ стороны куба равна средней линии гpани октаэдра d=(√18)/2
через ребро куба d = b√2 = (√18)/2, b = 1,5
Объем куба V = b³ = 1,5³ = 27/8 = 3 3/8
Дано координати точок А(7 8) В(3 5) С(-5 9)
Треба знайти
2.) Рівняння висоти трикутника АВС, опущеної з вершини А на сторону
ВС;
Находим уравнение прямой ВС. Вектор ВС = (-5-3; 9-5) = (-8; 4).
Уравнение ВС: (x - 3)/(-8) = (y - 5)/4 или в общем виде x + 2y - 13 = 0.
В уравнении высоты АН из точки А на сторону ВС, представленной в виде Ax + By + C = 0 коэффициенты А и В меняются на -В и А.
Получаем уравнение АН: -2x + y + С = 0.
Для определения слагаемого С подставим координаты точки А:
-2*7 + 1*8 + С = 0, отсюда С = 14 - 8 = 6.
Уравнение ВС: -2x + y + 6 = 0 или 2x - y - 6 = 0.
3.) Рівняння медіани трикутника АВС, опущеної з вершини В на сторону
АС; Находим координаты точки М (основание медианы) как середину стороны АС: М = (А(7 8) + С(-5 9))/2 = (1; 8,5).
Вектор ВМ = (1-3; 8,5-5) = (-2; 3,5).
Уравнение ВМ: (x - 3)/(-2) = (y - 5)/3.5 или в целых единицах
(x - 3)/(-4) = (y - 5)/7. Оно же в общем виде 7x + 4y - 41 = 0.
4.) Рівняння прямої, яка проходить через точку С паралельно стороні ВС; Это и есть прямая ВС.
5.) Величину кута між прямими АВ та АС;
Находим векторы АВ и АС.
Вектор х у Квадрат Длина
АВ = -4 -3 25 5
АС = -12 1 145 12,04159458
cos A = (-4*(-12) + (-3)*1)/(5*√145) = = 0,747409319
A = 0,726642341 радиан
A = 41,63353934 градусов
6.) Відстань від точки С до прямої АВ.
Для вычисления расстояния от точки M(Mx; My) до прямой Ax + By + C = 0 используем формулу:
d = |A·Mx + B·My + C| / √(A² + B²).
Вектор АВ = (-4; -3).
Уравнение АВ: (x - 7)/(-4) = (y - 8)/(-3) или в общем виде 3x - 4y + 11 = 0.
Подставим в формулу коэффициенты точки С и уравнения стороны АВ:
d = |3·(-5) + (-4)·9 + 11| / √(3² + (-4)²) = |-15 - 36 + 11| / √(9 + 16) =
= 40 /√25 = 8.
Не то, что было бы трудно сосчитать, "как человек". Я в конце приложу "детский" расчет. А пока вот - что. Размещу-ка я КООРДИНАТНЫЕ ОСИ таким образом, чтобы центр координат был в центре октаэдра, а вершины его - в симметричных точках на осях. "Легче простого" убедиться в том, что координаты этого тетраэдра будут такие
(0,0,3) (0,0,-3) (0,3,0) (0,-3,0) (0,0,3) (0,0,-3).
Можете убедится, что любое ребро такого октаэдра равно √18 = 3*√2; (ну, соедините точку на оси X, x = 3, с точкой на оси Y, y = 3, получится равнобедренный прямоугольный тр-к с катетом 3, и гипотенузой 3*√2, и так - все ребра).
А теперь найдем координаты вершин куба. Рассмотрим "положительный" октант, то есть ту восьмую часть пространства, где x>0,y>0,z>0. Уравнение плоскости грани легко записать в виде x + y + z = 3, при этом центр этого треугольника имеет одинаковые координаты по всем осям, то есть лежит на прямой x = y = z;
Поэтому координаты вершины куба (1,1,1). Ну, и сразу ясно, какие будут координаты вершин куба в остальных октантах
(1,1,1) (-1,1,1) (1,-1,1)(-1,-1,1)(1,1,-1) (-1,1,-1) (1,-1,-1)(-1,-1,-1). Очевидно, что ребро куба равно 2, а объем равен 8. При этом объем октаэдра равен
8*(3/3)*(3*3)/2 = 36.
Теперь "детское" решение.
Сечение, перпендикулярное большой диагонали октаэдра, представляет собой квадрат со стороной 3*√2. Диагональ такого квадрата равна 6, а сторона квадрата, соединяющего середины сторон этого сечения, равна 3. Вершина куба лежит на апофеме, на расстоянии, на 1/3 апофемы ближе к вершине грани,чем середина основания, поэтому сторона куба равна 2/3 от стороны квадрата, соединяющего середины сторон построненного сечения. То есть равна 2, а объем 8.