1 замкнутая кривая, все точки к-рой равно удалены от центра.
Центр окружности – это точка, равноудаленная от точек окружности
Прямая линия, соединяющая центр с любой точкой окружности или поверхности шара.
2 Хо́рда в планиметрии — отрезок, соединяющий две точки данной кривой
Хорда, проходящая через центр О, называется диаметром.
3 Окружность называется описанной около треугольника, если она проходит через все его вершины. Центр окружности, описанной около треугольника, является точкой пересечения серединных перпендикуляров к сторонам треугольника.
4 Теорема. Центр окружности, описанной около треугольника, является точкой пересечения перпендикуляров к сторонам треугольника, проведённых через середины этих сторон.
5 Прямая, имеющая с окружностью только одну общую точку, называется касательной к окружности, а их общая точка называется точкой касания прямой и окружности.
Объяснение:
))
Получили прямоугольный треугольник, одним катетом АС которого является перпендикуляр, а наклонная АВ является гипотенузой, проекция на плоскость ВС - это второй катет. Ищем его по теореме Пифогора.
√(81-36)=√45см
Получили треугольник АВС, в котором АС=6см, АВ=9см, ВС=√45см
Из вершины прямого угла С проводим перпендикуляр СН на гипотенузу АВ. АН - это и есть проекция перпендикуляра АС на наклонную АВ. Можно решать через подобие полученных треугольников, но лучше по теореме Пифагора.
Пусть ВН=х, тогда АН=9-х
Из треуг. АНС: CH^2=36-(9-x)^2
Из треуг. СНВ: CH^2=45-x^2
Приравниваем:
36-(9-x)^2=45-x^2
36-81+18х-x^2==45-x^2
18x=90
x=5
CH=√(45-25)=√20=2√5см