
Объем пирамиды равен одной трети произведения ее высоты на площадь основания.
V=⅓ S∙h
Основание правильного шестиугольника состоит из шести правильных треугольников.
Площадь правильного треугольника находят по формуле:
S=(а²√3):4
S=4√3):4=√3
Площадь правильного шестиугольника в основании пирамиды:
S=6√3
Высоту найдем из прямоугольного треугольника АВО:
Так как ребро образует с с диагональю основания угол 60°, высота пирамиды ВО равна
H=ВО=2:ctg (60°)= 2·1/√3=2√3
Можно найти высоту и по т. Пифагора с тем же результатом.
V= 2√3∙6 √3:3=12 (кубических единиц)
Подробнее - на -
Объяснение:
Отложим на перпендикулярах отрезки
Точка О - центр ABC, т.е. точка пересечения его медиан. Медиана правильного треугольника ABC делится точкой O в соотношении AO:OD = 2:1, откуда AO:AD = 2:3
Опустим из точки D перпендикуляр на плоскость в точку
Отрезок
Треугольники
Тогда
Учитывая вышеизложенное, получаем
ответ: 14 дм.