Далее найдем уравнение медианы МК, используя формулу для уравнения прямой, проходящей через две заданные точки. Т.е. MK проходит через точки M(-2;6), K(2;-2).
Рух - відображення площині на себе, при якому відстані між точками площини зберігаються. Приклади руху: осьова симетрія, центральна симетрія, паралельний перенос. Властивості руху: відрізок переходить в відрізок, кут переходить в рівний йому кут, окружність переходить в окружність того ж радіуса і т. П.Мал. 1. Нехай є деяка виділена точка Про площині. Крім того, розглянемо довільну точку М тій же площині. Поворотом (позначення -) щодо точки О, званої центром повороту на Ðα (кут повороту) називається таке відображення площині на себе, при якому будь-яка точка М площині переходить в таку точку М1 тій же площині, що ОМ = ОМ1 і, крім того, ÐМОМ1 = α (Рис. 1). Доведемо, що поворот є рухом. Доказ (Рис. 2).Розглянемо точки М і N площині, що переходять при повороті відповідно в точки М1 і N1 тій же площині. Розглянемо трикутники ОМN і ОМ1N1. У цих трикутниках ОМ = ОМ1 і ОN = ОN1. ÐМОN = α - ÐМОN1; ÐМ1ОN1 = α - ÐМОN1, отже, ÐМОN = ÐМ1ОN1. Таким чином, зазначені трикутники рівні за двома сторонами і кутом між ними. Звідси випливає рівність відрізків МN = М1N1. Оскільки точки М і N вибиралися нами довільно, можна стверджувати, що при повороті довжини відрізків зберігаються. Теорема доведена. Нам необхідно навчитися використовувати розглянутий тип руху. Завдання (аналогічна № 1167 з підручника Атанасян, см. Список літератури) Побудуйте трикутник, який виходить з даного трикутника ABC поворотом навколо точки А на кут 60 ° проти годинникової стрілки (ΔАВС). Рішення (Рис. 3).При повороті точка А перейде в саму себе. Точки В і С перейдуть в точки В1 і С1 відповідно. Кути трикутника і довжини його сторін, відповідно до загальних властивостями руху, збережуться (всі позначення сторін і кутів дані на Рис. 3). Побудови при повороті вкрай за до циркуля побудувати дугу кола радіусом, рівним довжині сторони трикутника (АС або АВ), з центром в точці А, далі за до транспортира відкласти на дузі кут 60 ° і відзначити точку-образ (В1 або С1) . Поєднавши отримані точки-образи відрізками, можна отримати шуканий трикутник А1У1С1, що є чином трикутника АВС (ΔАВС = ΔА1В1С1). Точка О є точкою перетину биссектрис рівностороннього трикутника ABC. Доведіть, що при повороті навколо точки О на кут 120 ° трикутник ABC відображається на себе. Рішення.Точка О перетину биссектрис правильного трикутника є центром цього трикутника. Отже, вершини трикутника при повороті навколо точки О будуть «малювати» дуги кола, описаного навколо ΔАВС. Легко показати, що ÐВОС = ÐСОА = ÐАОВ = 120 °. Отже, при повороті, точка А перейде в точку В, точка В перейде в точку С і точка С перейде в точку А (нагадаємо, що кут повороту вважається позитивним, якщо поворот відбувається проти годинникової стрілки). Таким чином, ΔАВС = ΔАВС. Завдання вирішена. Завдання. Дана пряма, на якій задані точка О1 і точка О2 і дано точки А і В, що лежать по різні боки від цієї прямої. Причому мають місце рівності відстаней: О1А = О1В, О2А = О2В. Довести, що точки А і В симетричні щодо зазначеної прямий. Рішення (Рис. 5).Для доказу необхідного в завданню затвердження нам необхідно довести, що АМ = МВ і АВ ^ О1О2. Побудуємо коло радіусом О1А з центром в точці О1 і коло радіусом О2А з центром в точці О2. Розглянемо деяку осьову симетрію з віссю О1О2. При такому відображенні півкола, розташовані у верхній півплощині, перейдуть до відповідних півкола, розташовані в нижній півплощині щодо осі симетрії. При цьому точка перетину «верхніх» півколо - точка А - перейде в точку перетину «нижніх» півколо - точку В. Тобто точка В симетрична точці А відносно даної прямої. Завдання вирішена. На закінчення розберемо ще один застосування понять симетрії. Дан паралелограм ABCD. Довести, що точка перетину його діагоналей є його центром симетрії. Нагадування: фігура називається симетричною відносно точки О, якщо для кожної точки фігури симетрична їй точка щодо точки Про також належить цій фігурі. Точка О називається центром симетрії фігури. Кажуть також, що фігура має центральну симетрію.
Обозначим середину стороны DС буквой K. Координаты точки K ищем по формуле деления отрезка пополам
\begin{lgathered}x_K=\dfrac{x_D+x_C}{2}=\dfrac{8+(-4)}{2}=2\\ y_K=\dfrac{y_D+y_C}{2}=\dfrac{-2+(-2)}{2}=-2\end{lgathered}
x
K
=
2
x
D
+x
C
=
2
8+(−4)
=2
y
K
=
2
y
D
+y
C
=
2
−2+(−2)
=−2
Далее найдем уравнение медианы МК, используя формулу для уравнения прямой, проходящей через две заданные точки. Т.е. MK проходит через точки M(-2;6), K(2;-2).
\begin{lgathered}\dfrac{x-x_1}{x_2-x_1}=\dfrac{y-y_1}{y_2-y_1}\\ \\ \\ \dfrac{x-(-2)}{2-(-2)}=\dfrac{y-6}{-2-6}~~~\Rightarrow~~~\dfrac{x+2}{4}=\dfrac{y-6}{-8}~~~\Rightarrow~~~ \boxed{y+2x-2=0}\end{lgathered}
x
2
−x
1
x−x
1
=
y
2
−y
1
y−y
1
2−(−2)
x−(−2)
=
−2−6
y−6
⇒
4
x+2
=
−8
y−6
⇒
y+2x−2=0
ответ: y + 2x - 2 = 0.