ответ: 9 см и 23 см
Пусть трапеция АВСD, а ВК - биссектрисса тупого угла АВС. Поскольку она параллельна боковой стороне СD, то ВСDК - параллелограмм
Угол СDК равен углу АВК т.к. ВК - биссектриса.
Угол СDК равен углу КВС как противолежащие углы параллелограмма.
Угол СDК равен углу А, как углы при основании равнобокой трапеции. Следовательно, угол АВС равен двум углам А, и угол А + угол АВС =180° отсюда угол А = 60°, угол АВК = 60° и треугольник АВК - равносторонний АВ = АК = BK = 14, значит ВС + КD = 60 - (14*3) = 18. ВС = 18 : 2 = 9 см
АD = 9 + 14 = 23 см.
Высота пирамиды - это высота равнобедренного
прямоугольного треугольника, она равна половине его гипотенузы и равна H = а√2/2 = а/√2.
Так как гипотенуза основания пирамиды - диагональ квадрата, то сторона его равна а√2/√2 = а.
Это означает, что все рёбра пирамиды равны а, боковые грани - равносторонние треугольники.
Отсюда площадь основания So = a², периметр основания
Р = 4а.
Находим апофему боковой грани: А = а*cos30 = a√3/2.
Площадь боковой поверхности пирамиды:
Sбок = (1/2)А*Р = (1/2)*(а√3/2)*4а = а²√3.
Объём пирамиды V=(1/3)So*H = (1/3)*a²*( а/√2) =
= a³/3√2.