30° и 60°
Объяснение:
Теорема: внешний угол треугольника равен сумме двух других углов треугольника, не смежных с ним.
Обозначим углы треугольника ∠А, ∠В и ∠С = 90°, а внешние углы 12 х и 15 х. Составим систему уравнений и найдём х:
12 х = ∠А + ∠С = ∠А + 90°
15 х = ∠В + ∠С = ∠В + 90°
или
12 х = ∠А + 90° (1)
15 х = ∠В + 90° (2)
Сложим (1) и (2)
12х + 15х = ∠А + 90° + ∠В + 90°
А так как ∠А + ∠В = 90° (сумма острых углов прямоугольного треугольника равна 90°), то:
12х + 15х = 90° + 90° + 90°
27х = 270°
х = 270 : 27 = 10°
∠12 х = 12 · 10 = 120°
∠15 х = 15 · 10 = 150°
Так как:
12 х = ∠А + 90° (1)
15 х = ∠В + 90° (2)
то заменим полученные значения 12 х на 120° и 15 х на 150° и найдём острые углы треугольника:
120° = ∠А + 90°, откуда ∠А = 120° - 90° = 30°
150° = ∠В + 90°, откуда ∠В = 150° - 90° = 60°
ответ: 30° и 60°.
1) В задании имелось в виду, очевидно, что сечение проходит через высоту пирамиды.
В таком случае для правильной пирамиды в сечении имеем треугольник со боковыми сторонами - боковым ребром и апофемой.
В основании сечения - высота h правильного треугольника основания пирамиды.
h = a√3/2 = 2√3*(√3/2) = 3 см.
Отсюда получаем ответ: S = (1/2)hH = (1/2)*3*6 = 9 см².
2) Периметр Р основания пирамиды равен: Р = 7а = 7*4 = 28 см.
Площадь Sбок боковой поверхности равна:
Sбок = (1/2)РА = (1/2)*28*5 = 70 см².
3) В диагональном сечении правильной четырёхугольной пирамиды имеем равнобедренный треугольник с боковыми сторонами, равными боковым рёбрам пирамиды.
В основании этого треугольника - диагональ квадрата в основании пирамиды, которая равна а√2 = 5√2*√2 = 10 см.
ответ: Р = 2*7+10 = 24 см.
2,6 мм.
Объяснение:
d= 2 радиуса, нам так объясняли