На малюнку CD - дотична, проведена до кола з центром у точці O. Кут BAD = 26о. Знайти кут AOB. У відповідь вписуємо тільки число (без будь-яких вимірів).
Если ВА⊥АD, то ∠А=90(по опр.перпендикуляра), и ∠В=90, так как ВА⊥ВС, так как ВС∫∫АD(по св-ву парал. прямых) ⇒ АВСD - прямоугольная трапеция( по опр.). Проведем высоту СМ. И рассмотрим получившийся четырехугольник ВАМС, это прямоугольник, так как ∠А=∠В=90, и ∠М=∠С=90(по опр. высоты) ⇒ВА=СМ=6, и ВС=АМ=6. Рассмотрим ΔСМD: СМ мы провели так, что она разделила ∠ВСD=135, на ∠МСВ=90 и ∠МСD=45. Если ∠МСD=45, а ∠СМD=90(по опр. высоты), то ∠СDM=45(по теореме о сумме ∠ в Δ) ⇒ ΔСМD - равнобедренный (по признаку) ⇒ СМ=MD=6(по опр. равноб. Δ) Найдем основание трапеции: АМ+МD 6+6=12
Пусть x приходится на 1 часть. 1x-1 угол. 2x- 2 угол. 3x-3 угол. Сумма углов треугольника равна 180 градусов. x+2x+3x=180. 6x=180. x=30. 1 угол - 30 градусов, 2 - 60 градусов, 3 - 90 градусов. Треугольник у нас получается прямоугольным. Гипотенуза из условия будет равна 36. Катет, лежащий напротив угла в 30 градусов, равен половине гипотенузы = 18. Оставшийся катет можно найти по т. Пифагора: 36^2-18^2=оставшийся катет в квадрате. 972=катет в квадрате. Он будет равен 18*корень из 3. Наименьшая сторона равна 18.
Проведем высоту СМ. И рассмотрим получившийся четырехугольник ВАМС, это прямоугольник, так как ∠А=∠В=90, и ∠М=∠С=90(по опр. высоты) ⇒ВА=СМ=6, и ВС=АМ=6.
Рассмотрим ΔСМD: СМ мы провели так, что она разделила ∠ВСD=135, на ∠МСВ=90 и ∠МСD=45. Если ∠МСD=45, а ∠СМD=90(по опр. высоты), то ∠СDM=45(по теореме о сумме ∠ в Δ) ⇒ ΔСМD - равнобедренный (по признаку) ⇒ СМ=MD=6(по опр. равноб. Δ)
Найдем основание трапеции: АМ+МD
6+6=12
Найдем площадь:
S=
ответ:54