Площадь полной поверхности равна сумме площадей боковой поверхности и двух площадей оснований. Площадь боковой поверхности равна периметру основания, умноженного на высоту призмы.
P = 36+29+25 = 90
Площадь основания (треугольника) находим по формуле Герона: Полупериметр p = P/2 = 45 p-a = 45-36 = 9 p-b = 45-29 = 16 p-c = 45-25 = 20
См. рисунок. решать задачу можно разными например, вот этими двумя. 1) сделаем достроение BD параллельно МС. Отсюда углы МСВ, СВD и СDB равны, значит, СВ=СD по т. Фалеса если АМ/МВ=3/5 тогда АС/СD=3/5 т.е имеем систему a/b=3/5 и a+b=72 отсюда a=27 b=45 2)рассмотрим треугольники АСМ и МСВ АМ/sin(ACM)=AC/sin(AMC) MB/sin(MCB)=CB/sin(BMC) т.к углы АСМ и МСВ равны, а угол АМС=180-ВМС, тогда sin(ACM)=sin(MCB) и sin(AMC)=sin(BMC) отсюда АС/СВ=АМ/МВ=3/5 АС+СВ=72 пришли опять к той же системе. задача решена
Площадь боковой поверхности равна периметру основания, умноженного на высоту призмы.
P = 36+29+25 = 90
Площадь основания (треугольника) находим по формуле Герона:
Полупериметр p = P/2 = 45
p-a = 45-36 = 9
p-b = 45-29 = 16
p-c = 45-25 = 20
S² = p(p-a)(p-b)(p-c) = 45*9*16*20 = 900*9*16
S = √(900*9*16) = 30*3*4 = 90*4 = 360
2S = 360*2 = 720
Т.о., площадь боковой поверхности равна 1620-720 = 900.
Высота призмы равна 900/90 = 10
ответ: высота призмы равна 10.