№1.
Угол между касательной и радиусом, проведенным к ней равен 90 градусов, поэтому ОА будет гипотенузой в треугольнике АВО, а ОВ - катетом. Дальше из теоремы Пифагора:
АВ=
и того, АВ=8
ответ:8см.
№2.
уголA+уголB+уголC=180°( по теореме о сумме углов в треугольнике)
Уравнение:
Пусть Х будет угол А, тогда 3Х угол В, а 5Х угол С
Х+3Х+5Х=180
9Х=180
Х=180:9
Х=20°
20*3 равно=60градусов
ответ: угол В= 60 градусов, угол С= 100 градусов.
№3.
Длина диаметра 20 см. Концы диаметра и данная точка окружности образуют вписанный угол, опирающийся на диаметр. Вписанный угол, опирающийся на диаметр, прямой.
Значит, получившейся треугольник будет прямоугольным. Расстояние от другого конца диаметра до данной точки найдем по теореме Пифагора, как длину катета прямоугольного треугольника:
=(20-16)(20+16)=4*36=144
см
ответ:12 см.
идеально
Объяснение:
Р = 27 см.
Объяснение:
Так как треугольник равнобедренный, то две его стороны (боковые) равны. В условии не сказано, какая из двух данных нам разных по длине сторон боковая. Следовательно, мы должны проверить два варианта решения.
Первый вариант: пусть основание равно 11 см. Тогда боковые стороны равны по 5 см. Но это противоречит теореме о неравенстве треугольника, по которой большая из трех сторон треугольника должна быть меньше суммы двух других сторон: 11 > (5+5). Значит этот вариант решения не удовлетворяет условию существования треугольника.
Второй вариант: пусть основание равно 5 см. Тогда боковые стороны равны по 11 см. => 11 < (11+5) => условие существования треугольника выполняется. Следовательно, такой треугольник существует и его периметр (сумма всех сторон) равен Р = 11+11+5 = 27 см.
Угол ВОС - это центральный угол для вписанного угла ВАС = 75 градусов. Поэтому угол ВОС = 150 градусов. боковые стороны ОВ = ОС = R.
16 = R^2*sin(150)/2 = R^2/4; R = 8;